
DOCUMENT RESUME

ED 385 968 EC 304 162

AUTHOR Woodward, John; Gersten, Russell
TITLE The TORUS Project: An Innovative-Assessment

Technology Program. Final Report.
INSTITUTION Eugene Research Inst., OR.
PUB DATE 30 Mar 92
CONTRACT H180B90020-90
NOTE 93p.

PUB TYPE Reports Descriptive (141) Reports
Evaluative/Feasibility (142)

EDRS PRICE MF01/PC04 Plus Postage.
DESCRIPTORS . Addition; *Computer Managed Instruction; *Computer

Software; Construct Validity; *Elementary School
Mathematics; *Error Patterns; Intermediate Grades;
Junior High Schools; *Learning Disabilities; Material
Development; *Mathematics Instruction; Middle
Schools; Program Evaluation; Subtraction

ABSTRACT
This report describes TORUS, a computer-based program

for elementary school students with learning disabilities which
analyzes student work samples in addition and subtraction and
provides individual profiles of student misconceptions and
weaknesses. Initially, work samples from 236 middle school students
with learning disabilities were analyzed by a human expert to assess
the relative difficulty of addition and subtraction in terms of
number and types of misconceptions and to provide an empirical basis
for encoding misconception algorithms into the TORUS program. Pilot
test data, construct validity research, and criterion validity
studies are described, as are the use of commercial programs as
building blocks for sophisticated software and differences between
TORUS and the BUGGY program. The 10 most common substraction
misconceptions are identified and matched to the sequence of the
"Corrective Mathematics Program," a remedial curricula for special
education students. Included in the report are a sample TORUS student
profile and the following two papers: "A Comparison of TORUS and
Human Expert Diagnoses: A Construct Validity Study" (Michael Landes)
and "Software Development in Special Education" (John Woodward).
(Contains 109 references.) (SW)

Reproductions supplied by EDRS are the best that can be made
from the original document.

U.& DEPARTMENT OF EDUCA7ION
Office of Educational Research and improvement

EDU ATIONAL RESOURCES INFORMATION
CENTER (ERIC)

Thrs document haS been reproduced as
received from the person or orgaruzation
originatmg .1

0 Minor changes have been made to improve
reproduchon Quahty

Points of view or opimons stated on INS docu
mem do not necessarily represent official
OER1 position or policy

The TORUS Project: An Innovative-Assessment Technology Program

Final Report

H180B90020-90

Project Directors

John Woodward

Russell Gersten

Eugene Research Institute
1400 High Street

Eugene, Oregon 97401

March 30, 1992

BEST COPY AVAILABLE

Table of Contents

page

1.0 Introduction to the Final Report 1

2.0 Pilot Data and Preliminary Analyses 3

3.0 A Comparison of TORUS and Human Expert Diagnoses:
A Construct Validity Study 7

4.0 Software Development in Special Education (in preparation) 32

5.0 Detailed Comparison of BUGGY and TORUS 64

6.0 Remedying Misconceptions: Coordinating TORUS Disagnoses
with SRA's Corrective Mathematics Program

78

7.0 Current Uses of the TORUS program 84

8.0 Dissemination 85

3

1.0 Introduction to the Final Report

The Expert Analysis of Mathematics Proficiency (EXAMPLE) is an

innovative use of technology to assess student misconceptions in addition and

subtraction. Shortly after the inception of the project, the program was renamed

TORUS, which is the term that is used throughout this report. The TORUS

program focuses on the addition and subtraction operations because of the "well-

structured" nature of these operations (i.e., they are amenable to fine grained

analyses through artificial intelligence programs). In this respect, these

operations are a vehicle for testing the limits of sophisticated computer analyses

of student error patterns.

In the initial phases of the project, work samples from 236 middle school

students with learning disabilities were analyzed by a human expert. The

purpose of this was twofold: a) to assess the relative difficulty of addition and

subtraction in terms of number and type of misconceptions and b) to provide an

empirical basis for encoding misconception or "bug" algorithms into the TORUS

program. Pilot test data, preliminary construct validity research, and criterion

validity studies are described in Section 2.0 of this report.

Results from the human expert analyses, pilot tests of TORUS, and a

further review of the literature on misconceptions enabled the project directors

and staff to formatively evaluate TORUS as an innovative technology assessment

program. These individuals concluded at this point in the project that: 1)

subtraction was a far more complicated operation than addition, one which

produced many more student misconceptions 2) subtraction misconceptions

were insensitive to the kind of remedial instruction commonly found in special

education classrooms 3) construct validity studies were crucial to TORUS as a

viable diagnostic tool and 4) the commercial programs used to create TORUS

4

1

(i.e., FoxBaseTM and Nexpert ObjectTM) were highly robust tools for developing 2

high quality software under highly constrained development timelines. Further

construct and social validity studies of TORUS are described in Section 3.0. The

use of commercial programs as building blocks for sophisticated software is

described in Section 4.0.

The final TORUS program is a comprehensive tool for diagnosing

subtraction misconceptions and prototypes a similar khid of diagnosis for

addition. The algorithms used in TORUS are empirically derived, and thus, of

much greater potential use to diagnosticians and teachers than previous

programs such as BUGGY (Brown & Burton, 1978). Differences between BUGGY

and TORUS are described in Section 5.0.

TORUS diagnoses have also been linked to a highly popular remedial

mathematics curricula used in special education classrooms SRA's Corrective

Mathematics Program. One of the senior authors of this curricula carefully

analyzed it's scope and sequence, correlating it to the TORUS diagnoses. The

final remediation guide, which appears in Section 6.0, streamlines a student's

path through the Corrective Mathematics Program once a diagnosis has been

rendered. The final two sections of this report describe the current uses of

TORUS (Section 7.0) as well as dissemination activities (Section 8.0) which have

been conducted over the last two years.

An actual copy of the TORUS program has not been enclosed with this

report because its operation depends on two commercial software programs (i.e.,

FoxBaseTM and Nexpert Objectml). It would be a violation of copyright protection

laws to distribute copies of these programs in this fashion. However, a beta

version of TORUS was demonstrated to Drs. Martin Kaufmann, Tom Hanley,

Martha Couthino, and Kenneth Denny during a site visit to the Eugene Research

Institute in May 1991.

3

2.0 Pilot Data and Preliminary Analyses

The TORUS program (Woodward, Freeman, Blake, & Howard, 1990)

was explicitly designed to build upon the work conducted in the BUGGY

project (J. S. Brown & Burton, 1978; J. S. Brown & VanLehn, 1982; Burton,

1981; VanLehn, 1982, 1988, 1990). Like BUGGY, TORUS captures the subtleties

of student misconceptions in a systematic manner through "after the fact"

analyses of responses. In the spirit of IDEBUGGY (Burton, 1981), TORUS

interactively generates problems to test hypotheses about sources of students'

errors. The hypotheses are derived from a thorough analysis of a standard set

of 30 addition or 40 subtraction problems and confirmed with a follow-up set

of problems. For each student, the system renders an individual diagnosis

that explains the majority of that student's errors. Educational prescriptions

tailored to the pragmatic needs of diagnosticians and special educators can

accompany each diagnosis.

Hardware and Software Features

TORUS has been designed for the Macintosh II line of computers. The

decision to use this computer was made on the basis of Apple Computer's

preeminence in the field of education as well as the likelihood that these

computers will continue to replace the aging supply of Apple II type

computers in public schools. The Macintosh II computer has also enabled us

to use Neuron Data's Nexpert Object expert system shell and Fox Base's

relational database management system as core technologies. Each program is

extremely powerful, widely used across a range of microcomputer and

mainframe platforms, and recognized as a leader in its field internationally.

This software development strategy has allowed us to build a very

sophisticated program in a relatively short period of time; one that is reliable

4

and free of the erratic behavior of programs that are written from "scratch" in

a programming language such as Pascal or C+.

At an early stage in the development of the project it was decided that

many issues of ecological validity would be obviated by having the students

work the problems with pencil and paper rather than directly on the

computer. By using teachers or other trained personnel to enter the student

performance data, one computer can provide information about the

performance of any number of students.

AnalyzkI Misconceptions in Two Diagnostic Sessions

The analyses of addition or subtraction occur across two sequential

sessions in TORUS. The first part of the test (The TORUS Achievement Test)

consists of 40 problems designed to reliably assess student computational

performance. The test covers a reasonable range of problems for the

intermediate and middle school, learning disabled student and has four

alternate forms. Coefficient alpha reliability for the test is .97. There are four

alternate forms to this test (alternate form reliability = .93).

The TORUS analysis yields hypotheses about overall competence, the

areas of difficulty and proficiency, and whether or not there are "bugs" (i.e.,

misconceptions that result in specific student behavior). The second test (The

Profile of Misconceptions) consists of problems selected by the expert system

to confirm/disconfirm the hypotheses established by the first session.

For example, if the first session analysis indicates a high error rate on

subtraction problems that contain double zero borrows (e.g., 4007-831), the

second session test would contain (a) problems of the same type as those

missed i.e., double zero borrows, and (b) problems that are minimally

different-- e.g., single zero borrows (407-31), and double non-zero borrows

(4657-982) in order to confirm or disconfirm the hypothesis. This kind of

7

5

hypothesis testing through new data is a common feature of expert systems

technology (Bowerman & Glover, 1988; Hayes-Roth, Waterman, & Lenat,

1983; Rich, 1983; Wenger, 1987).

As a final step in the analysis, bug algorithms similar to those

employed in BUGGY are applied to the incorrect problems. If a given bug

algorithm yields the same answers to the problems as the student, the

inference is made that the student has that bug. The number of bug

algorithms has been limited to the 30 most frequently documented in the

literature. These misconceptions account for over 80 percent of student errors

that can be identified as buggy in our research as well as that of Brown and

Burton (1978) and Young and O'Shea (1981). The number of bugs has been

restricted because it is felt that low incidence bugs have little educational

meaning to diagnosticians or special educators.

Construct Validity

The final diagnostic summary of performance specifies: (a) the percent

correct on the total test; (b) the percent correct and incorrect on different

problem types; (c) and any specific procedural errors found. Human expert

agreement with the TORUS program on these three levels of diagnosis is 1.0

for percent correct, .95 for percent incorrect by problem type, and .90 for final

error diagnosis. All three levels of diagnosis are helpful to the researcher,

diagnostician, and the practitioner. This kind of information effectively

profiles competence as teachers proceed through a standard addition or

subtraction curriculum beginning with the least complex (e.g., non-borrow

problems) and working toward more complex ones (e.g., subtraction problems

involving zeros and multiple borrows).

8

6

Criterion Validity

Two studies were conducted to assess the criterion-related validity of

TORUS to the Metropolitan Achievement Test (MAT). Seventy-five middle

school students with learning disabilities took the TORUS Addition Test and

the Computations Subtest. Correlations between raw scores and the MAT

were .44 (p < .001). At the same time, 71 of these students took the TORUS

Subtraction Test. Similar analyses were conducted with the raw scores,

yielding a correlation of .51 (p < .001).

Another set of correlations were conducted in the Fall 1992 with 155

intermediate and middle school students with the MAT and the TORUS

Subtraction Test. Again, there were signficant correlations between raw

scores on each (p < .01), as well as general misconceptivAs (p < .01). This later

correlation included students whose main misconception was the inability to

borrow. However, on the more subtle misconceptions, there was no

significant correlation.

7

3.0 A Comparison of TORUS and Human Expert Diagnoses:
A Construct Validity Study

Michael Landes

Masters Project in Spedal Education
Mildly Handicapped Program

University of Oregon

Fall, 1991

0

8
Math assessment has been used to help teachers plan and make

instructional decisions. When students do poorly on a test, changes in

instruction are advisable. However, most teachers lack the knowledge to

diagnose math error patterns (e.g., in subtraction) as well as a repertoire of

alternate teaching strategies (Fuchs & Hamlett, 1988). When faced with low

scores, teachers often re-teach in the same curriculum using the same text and

teaching methods (Fuchs & Hamlett, 1988; Ysseldyke, O'Sullivan, Thurlow, &

Christenson, 1989). McLeod and Armstrong (1982) found that teachers rarely

provided strategy instruction, but relied on drill and extra practice using the

basal text and supplemental worksheets. Woodward and Gersten (in press)

reported similar findings.

It is likely that merely recycling students through curriculum in much

the same way that it was taught the first time would do little to correct the

difficulties and misconceptions causing the errors (Engelmann & Carnine,

1982). Furthermore, remedial instruction that simply provides extra practice

does not remedy the underlying causes of math errors (Fuchs & Hamlett,

1988). Student misconceptions can persist when students do not have a

conceptual understanding of the material.

Recent research (Howard & Woodward, 1990) suggests that some

students who have received specialized math instruction for more than five

years continue to show some kind of systematic pattern of errors in

subtraction. Assessment is needed which permitS analysis of a student's

thinldng process so that remediation can target the causes of the confusion.

Errors that at first appear random actually may be the result of a student

employing an incorrect algorithm (Brown & Burton, 1978). Assessment

results should include more than the percentage of items worked correctly

i I

9
and the type of problems missed. Clearly, there needs to be a change in how

teachers assess and remedy math errors.

The remainder of this section outlines some of the drawbacks to

current assessment methods, along with issues in cognitive assessment of

math errors. Finally, it is argued that computers can aid classroom teachers

in diagnosing student misconceptions in math if the information is

sufficiently detailed.

Traditional Math Assessment

Although thorough diagnoses of student errors are recommended by

some researchers (e.g., Silbert, Carnine, & Stein, 1981; Hammill, 1987), they

are time consuming and rarely found in classroom practice. Furthermore, if

teachers are asked to work an additional hour or two with no added

compensation, few will do it (Duckworth & Fielding, 1985; Stevens &

Driscoll, 1985).

On the other hand, when assessment systems are simplified (e.g.,

percent correct) other problems arise. Students who score at acceptable levels

on math tests, for example, may actually have a weak understanding of the

subject (Schoenfeld, 1985). Recent investigations (Howard & Woodward,

1990) of middle school students with learning disabilities in math showed

that on average, students scored at the 70 percent level in subtraction.

However, over half of the students also showed serious misconceptions about

this operation. To find out if students understand the concepts and processes

that form the core of math knowledge, assessment needs to provide

information on how students are thinking when they work math problems.

Problems with Curriculum Based Measurement

Curriculum based measurement (CBM) has emerged as a testing

measure closely aligned to classroom curriculum and therefore useful for

12

1 0
day-to-day instructional planning (Fvtchs & Fuchs, 1986). CBM was developed

because of dissatisfaction with standardized tests, which some researchers

believed were not appropriate for everyday instructional planning (Algozzine

& Ysseldyke, 1982; Glass, 1983; Salvia & Ysseldyke, 1985). Jenkins and Pany

(1978) and Good and Salvia (1988) found a poor match between standardized

tests and curricula used in classrooms. Also, standardized tests were little

help to teachers in planning instructional strategies.

CBM assesses student growth across time using measures that cover

material representative of the curriculum used in the classroom.

Assessments are made frequently (e.g., every two weeks), giving teachers

ongoing evaluation of instructional strategy and program success. By

following actual student progress on a graph relative to an aim line (i.e., the

expected rate of progress), the, teacher has a guide for making instructional

decisions. Frequent collection of student progress data should aid teachers in

evaluating their interventions (Idol, 1986; Fuchs & Fuchs, 1986). The link

between CBM and classroom curriculum makes CBM a useful tool for

teachers decision making (Fuchs, Fuchs, Hamlett, & Stecker, 1991).

Curriculum based measurement does have its drawbacks. CBM

usually indude the range of problems in a year's curriculum. As the year

progresses and students are taught additional problem types, their scores

should rise accordingly. However, a student may be making general

progress within a curriculum but have a specific weakness that is not fully

documented by the test results. Furthermore, even though CBM show what

problems are missed, the cause of the errors are still unknown to the teacher.

Another problem with CBM is that student growth is assumed to

progress at an even rate throughout the year. It is unlikely that every student

13

1 1

will experience steady growth. Assessment of student errors needs to go

beyond what is provided by CBM.

Informed Instruction

According to Brown and Campione (1986), informed instruction

includes teacher understanding of students' cognitive processes, which leads

to more effective remediation. Also, informed instruction incorporates

effective teacher practices including explicit strategies, immediate feedback,

and interactive teaching (Gersten, Woodward, & Darch, 1986; Woodward,

1991). Teachers who employ varied teaching strategies, have thorough

knowledge of the content area, and understand how students are thinking

about the ma-cerial, are most likely to establish an effective instructional

setting in the classroom.

Expert Assessment

Leinhardt and Smith (1985) found that expert teachers (i.e. teachers

with superior levels of student achievement) had detailed diagnosis and

"understanding of classes of student errors" and instructional plans to target

those errors. Without more detailed information about how students are

thinking, teachers can not match instruction to individual needs, and many

students will continue to process math using incorrect strategies. Expert

assessment is a necessary component of informed instruction. This suggests

that math assessment needs to supply more diagnostic information than is

provided by either standardized tests or current forms of CBM.

Computer Based Cognitive Assessment

BUGGY. BUGGY (Brown & Burton, 1978) was one of the first artificial

intelligence programs to assess common mathematical knowledge. The

system was designed to mimic the human cognitive processes used in solving

subtraction problems. BUGGY's purpose was to provide more information

14

1 2

than percent of problems correct and what problem types were missed. Using

its data base of possible subtraction errors, BUGGY provided a cognitive

account of what caused the errors. Brown and Burton (1978) found that the

BUGGY computer system enabled student teachers to discern students' error

patterns and misconceptions from random errors.

The BUGGY project has been a major influence in the study of

cognitive assessment and the use of technology in education over the past ten

years (Carpenter, Moser, & Romberg, 1982; Cawley, 1985; Ferrara, 1987;

Ginsburg, 1983; Pel3egrino & Goldman, 1987; Resnick & Ford, 1981;

Woodward & Carnine, 1988). The BUGGY research showed that students

interpret what they are taught. Students created their own algorithms to

work problems in subtraction even after they had been taught correct

algorithms by a teacher. This research shed new light on the cognitive

processes students use in working math problems.

Limitations of BUGGY. As a prototype computer assessment system

BUGGY explored technological capability to simulate human thinking

patterns with minimal regard for the instructional framework of classrooms.

The subtraction problems presented to students were not tested for item

reliability or validity. Some problems were too difficult and resulted in

obscure error diagnoses and computer generated misconceptions.

The use of computers for student assessment should match the

teacher's need for information. Too much data can leave teachers wondering

what information is relevant. Brown and Burton (1978) found that the

majority of student math errors were embedded in a few misrules.

Computer assessment can be useful to teachers without providing detailed

analyses of obscure error types. Computer assistance in assessment should

blend with pragmatic classroom needs (Woodward & Gamine, 1988).

15

1 3

Computers can process information rapidly and deliver error analyses

to teachers that are otherwise impractical to collect. Computers are a tool that

can help teachers pinpoint misconceptions in math accurately and efficiently.

TORUS. TORUS is a computer based program for elementary school

math assessment for students with learning disabilities (Woodward,

Freeman, Blake, & Howard, 1990). TORUS was designed to analyze student

work samples in addition and subtraction and provide individual profiles of

student misconceptions and weaknesses.

The developers of TORUS built upon previous research of computer

based assessment systems (e.g., Brown & Burton, 1978). BUGGY has been

referred to in the research literature as a prototype of a system that will bring

together assessment and remedial instruction (Brown & Campione, 1986).

The link between a teacher's ability to make informed instructional

decisions and the efficient gathering of precise information on a student's

math thinking was at the heart of the TORUS design. The goal was to mesh

technology with the realistic needs of classroom teachers. This philosophy

corresponds with the concept of informed instruction (Brown & Campione,

1986) that teacher understanding of the causes for student errors is necessary

to provide appropriate remediation instruction.

Another improvement in the design of TORUS over previous

diagnostic computer systems (e.g., BUGGY) was its focus on the common

misconceptions that students experience (e.g., Brown & Burton, 1978;

VanLehn, 1982; Young & O'Shea, 1981) rather than all possible

misconceptions which could be programmed into a computer.

An innovative feature of TORUS is that its diagnostic system involves

two testing sessions instead of one as in the BUGGY system. The first test is

group administered and has 40 problems. Coefficient alpha reliability for the

IG

1 4

test is .97 and alternate test reliability is .93. Using information garnered

from this initial test, TORUS makes an hypothesis about a student's error

misconception and constructs a second test to confirm or disconfirm the

hypothesis. That is, TORUS presents some problems the student should get

right and others the student should miss if its diagnosis is correct.

Cognitive Assessment of Math Errors

Individual student errors in math are highly consistent and follow

predictable patterns that indicate misinformed algorithms (Brown & Burton,

1978; Pellegrino & Goldman, 1987; VanLehn, 1983, 1990; Young & O'Shea,

1981). Students who made errors on subtraction tended to create their own

incorrect interpretations of algorithms taught by the teacher (Brown &

Burton, 1978).

Howard and Woodward (1990), in a study of students with learning

disabilities, found that students with similar scores on math work samples

had different error patterns. Also, students can miss similar problem types

for different reasons. Teachers must understand why student errors occur

before appropriate remediation can follow.

Diagnostic assessment that provides information about why errors are

made gives teachers some understanding of student thinking processes and

should lead to better remediation instruction.

For example, if the following problems were missed on a student worksheet,

306 470 7463 490 6066
- .152 - 115 - 634 - 72 - 963

254 365 7829 422 6903

and these problems were correct,

508 6005 904 870
- 102 - 2016 - 45 - 20
406 3989 859 850

1 5

an observant teacher would have some idea that the student's problem

involved borrowing with zeros. But even this level of diagnosis is possible

only if a teacher takes the time to closely examine student errors distributed

on a worksheet.

A curriculum based measurement test may show that the student in

the example above is progressing along the aim line and making adequate

progress. Because the total percent correct for this student may be high

enough to exclude further concern from the teacher, this student's

misconception could go unnoticed and unremedied.

An analysis of this student's.errors by an expert computer system

would find that the errors are systematic and predictable. Every time the

student needs to borrow for the first time and there is a zero in the minuend,

the student writes the number from the subtrahend in the answer for that

column. A computer assessment system would provide this hypothesis

along with several additional problems for the student to work in order to

confirm the hypothesis. Without having to figure out the error patterns

themselves, teachers can spend their time confirming computer analyses of

student misconceptions and improving student understanding of math.

The Need for Validation Of Expert Computer Systems

Research in cognitive assessment of mathematics would be difficult

without the use of technology (Goldman, Pellegrino, & Mertz, 1988;

Hasselbring, Goin, & Bransford, 1988). The BUGGY and TORUS research in

math assessment has been innovative for both educational technology and

assessment procedures. Recent trends in CBM assessment include expert

computer systems to help teachers make informed instructional decisions

(Fuchs, Allinder, Hamlett, & Fuchs, 1990).

-; 8

1 6

With interest in computer based cognitive assessment growing, there is

a need to validate these systems. That is, the accuracy of the computer

system's output needs to be examined. Hofmeister (1986) discussed this need

and described the validation procedures for their expert system (CLASS.LD)

designed to confirm placement decisions for students with learning

disabilities. Their validation method was based on computer agreement

with "experts" in the field of learning disabilities.

Validation of computer systems must be based on human agreement

or disagreement with the output of the system. If a teacher cannot confirm

information provided by a computer system then that information is not

useful to the teacher. TORUS, the focus of this project, was designed to be

used in conjunction with teachers who are able to judge the appropriateness

and quality of the information provided by the system.

The Research Questions

What is the reliability of the TORUS system in diagnosing students'

performance in subtraction when compared to human expert assessment in

the following areas: (a) percent correct (b) missed problem types (c) bugs or

systematic misconceptions?

Secondly, how easy were TORUS results to interpret? In other words,

how useful were these results under naturalistic settings compared to more

traditional means of assessing student performance?

Method

Subjects and Setting

One fourth grade classroom with 26 students was chosen at a rural

elementary school to participate in this study. Letters explaining the study

and asking for parental consent were sent home with all the students in the

19

1 7

classroom. The 22 students who returned parent consent letters were the

final participants in the study.

Materials

Students were given the first phase of the TORUS test, which consisted

of 40 subtraction problems representing various problem types and degrees of

difficulty. From the results of this assessment, TORUS provided the

following information for each student: (a) percent correct (b) missed problem

types and (c) an hypothesis about misconceptions or difficult problem types

for a student (see Appendix A for an example).

There were two types of hypotheses involving errors: misconceptions (i.e.,

bugs: predictably wrong answers due to incorrect algorithms) or a problem

type errors (i.e., a consistent pattern of wrong answers, but no predictable

answer to the problems).

Procedures

The 40 problem TORUS test was group administered to all subjects by the

classroom teacher. The test took approximately 20 minutes, and it was given

during a regular math period during the school day. This is the total

involvemmt of the students with the project.

The test results were analyzed separately by TORUS and the teacher. A

comparison was then conducted for three categories: (a) total percent correct

(b) problem types errors and (c) misconceptions. The teacher's results were

compared with the TORUS results to determine the amount of agreement

and disagreement for the three categories of data. This information was

recorded on the Performance Data Comparison Form (see Appendix B).

Finally, the teacher reexamined the test sheets of all students for which

there were disagreements between the teacher and TORUS. The purpose of

this final step was to determine if the TORUS generated data and hypotheses

Ldr. 0

1 8

could provide information that would cause the teacher to alter his initial

diagnosis. This was a critical aspect in determining the usefulness of the

TORUS system in a classroom setting. If TORUS could provide a systematic

analysis that was initially unseen by the teacher, then it would suggest that

TORUS was a more viable classroom assessment tool for diagnosing student

misconceptions in subtraction that a teacher performing the same task.

Data Analysis

Analyses performed by TORUS and the expert teacher were examined

independently by a researcher familiar with the project. There was a 100

percent agreement for the total percent correct. Agreement between TORUS

and the teacher on missed problem types was 93 percent.

Finally, there was an initial agreement of 19 of 22 on misconceptions or

bugs. The three forms where there was disagreement were returned to the

teacher with the TORUS analyses. After reviewing the TORUS findings, the

expert teacher indicated that two of the three provided the same analysis and

that the difference was semantic (i.e., he described the misconception in

different terms). This changed the agreement level to 95 percent.

Given the importance of agreement on misconceptions to the project, a

chi-square analysis was conducted on the two sets of analyses. Results were

non-significant (x2 = .09; p = .76).

The time taken by the teacher to record data for each student will be

noted on the Performance Data Comparison Form. An average time taken

per student was calculated for both methods of diagnosing student errors

being compared in this study: the teacher working alone and the TORUS

system.

TORUS required approximately three minutes per student for its

analysis. Furthermore, student data were done in batch mode for the entire

1 9

class. This time required by the teacher to analyzed 22 students was

approximately 15 minutes per student. Furthermore, the work was very

demanding, and it had to be done in small sets to insure a high quality

analysis. The teacher also examined the TORUS analyses at the end of the

project and concluded that its results were clear, concise, and informative.

On the whole, the TORUS method for detecting and tracking student

misconceptions was much more efficient and potentially more reliable than a

teacher who was well trained in analyzing student worksheets. It was also

apparent from this experience that responding to each misconception in

isolation was not the best method for instructional decision making. Rather,

students with misconceptions needed a deeper, more systematic and

conceptual approach to the subject than they traditional get in math classes.

2 0

Appendix A

Sample of a TORUS Student Profile

23

2 1

Student: Date:

Performance Data:

Number
of Problems

Number
Correct

Percent
Correct

Non-borrow problems 5 4 80

Borrow problems 25 15 60

Single non zero borrows 5 5 100

Multiple non zero borrows 5 4 80

Single zem borrows 5 2 40

Multiple zero borrows 5 1 20

Multiple mixed borrows 5 3 60

TOTAL TEST 30 19 63

Error Pattern:

The student has difficulties working subtraction problems when there is a
borrow for a zero. On the test, this student missed 90 percent of the problems
that looked like this:

902 1008 680 7084 403
- 846 - 42

831 1064 687 7838 441

When there is a problem that requires borrowing for the zero, the student writes
the bottom number in the answer (e.g., 0 -9 = 9, 0 - 4 = 4) and then goes to the next
column.

9 4

2 2
A TORUS hypothesis of a student's errors may target a problem type or

a misconception. A problem type hypothesis designates a type of problem a

student misses but doesn't explain what the student is doing wrong. The

only predictable aspect is that the student tends to miss that type of problem.

In contrast, an hypothesis of a misconception explains what the student

does wrong to miss the problem. So a student's misconception is predictable in

how the student will miss the problem. Below are examples of misconceptions

and problem types.

Problem Types

There are six mutually exclusive problem types identified by the

designers of TORUS. The following list includes examples of the problem

tYpes.

1. non-borrow: 637
- 516

2. single non-zero borrow: 648
- 375

3. multiple non-zero borrow: 9438
- 289

4. single zero borrow: 6304
- 1154

5. multiple zero borrow: 4050
- 3419

6. multiple mixed borrow: 4088
- 479

Another problem type that may include any of the six categories above

is asymmetrical problems. These are problems with a different number of

digits in the minuend and the subtrahend.

2 3

Misconceptions

There are many misconceptions that the program can diagnose. These

are incorrect algorithms that students use every time a particular situation

occurs in a problem. Zeros in problems account for many student errors in

subtraction.

Example: Borrowing for a zero bug.

This error pattern exists when a student incorrectly borrows from a

zero that hasn't been altered due to previous borrowing. For example,

804 70 6040 270
- 371 - 46 - 657 - 194

573 36 5397 84

these problems would be missed by the student in a predictable fashion. The

student might just put the number below the zero in the answer column

(0-N = N). Notice that in the third problem above the student would put a 7

in the ones column of the answer (incorrect) but a 3 in the hundreds column

(correct) because the student can change zeros to a 9 when necessary. Not

being able to change zeros to nines when necessary is a different bug

(borrowing from a zero bug).

Another way a student could show this bug is by just putting a zero in

the answer column (0-N = 0). Or a student might change all zeros to nines

even when a zero is being borrowed from for the first time and should be

made into a 10.

Regardless of the predictable way the student missed the problems, the

above bug would be confirmed by the second TORUS individualized test

using some minimally different problems like the ones below.

5007 708 7037 306
- 328 - 469 - 754 - 145
4679 239 6283 241

26

2 4
For a student who used a 0-N=N strategy for the borrow for a zero bug,

TORUS would predict that the student would get the first 3 problems correct

and miss the fourth problem.

Many times students have multiple bugs. For example, every time

there was a zero in the minuend a student could respond in a predictable

incorrect way. If a student always gave up when there was a zero in the

minuend that would be a problem type hypothesis rather than a bug. For a

misconception to exist a student makes predictable and systematic errors as a

result of employing an incorrect strategy (i.e., algorithm).

27

2 5

Appendix B

Performance Data Comparison Form

Student: Date:

Time Taken:

1. Items Correct:
40

2. Problem Types:

Non-borrows:

Single non-zero
borrows:

Multiple non-zero
borrows:

Single zero borrows:

Multiple zero borrows:

Multiple mixed
borrows:

3. Error Pattern:

TORUS TEACHER (researcher)

missed/total

23

40

missed/total

2 6

2 7
Teacher Change Form After Looking at TORUS Results:

Student: Date:

TORUS hypothesis of student error pattern:

Teacher hypothesis of student error pattern:

Teacher Reason For Change:

5 0

2 8
References

Algozzine, B., & Ysseldyke, J.E. (1982). Critical issues in special and remedial
education. Boston: Houghton Mifflin.

Brown, A.L. & Campione, J. C. (1986). Psychological theory and the study of
learning disabilities. American Psychologist, 14(10), 1059-1068.

Brown, J. S., & Burton, R. (1978). Diagnostic models for procedural bugs in basic
mathematic skills. Cognitive Science, / 155-168.

Carpenter, T.P., Moser, J.M. & Romberg, T.A. (1982), Addition and subtraction: A
cognitive perspective. Hillsdale, NJ: Lawrence Erlbaum Associates.

Cawley, J.F. (1985). Cognition and the learning disabled. In J.F. Cawley (Ed.),
Cognitive strategies and mathematics for the learning disabled (pp. 1-29).
Rockville, MD: Aspen Systems Corporation.

Erlwanger, S. H. (1973). Benny's conception of rules and answers in IPI
Mathematics. Journal of Children's Mathematical Behavior, 1 7-26.

Davis, R.B. (1983). Complex mathematical cognition. In H.P. Ginsburg (Ed.), The
development of mathematical thinking. Orlando, Florida: Academic Press.

Ferrara, R.A. (1987). Learning mathematics in the zone of proximal
development: The importance of flexible use of knowledge. Unpublished
doctoral dissertation. University of Illinois at Urbana-Champaign.

Fuchs, L., Allinder, R., Hamlett, C., & Fuchs, D. (1990). An analysis of spelling
curricula and teachers' skills in identifying error types. Reading and Special
Education, 11(1), 42-52.

Fuchs, L., & Fuchs, D. (1986). Effects of systematic formative evaluation: A meta-
analysis. Exceptional Children, 53(3), 199-208.

Fuchs, L. & Hamlett, C. (1988, December). Design and implementation of an
expert system: developing effective instructional programs with curriculum-
based assessment. Paper presented at the CEC/TAM Confcxence on Special
Education and Technology, Reno, NV.

Ginsburg, H.P., Kossan, N.E., Schwartz, R., & Swanson, D. (1983). Protocol
methods in research on mathematical thinking. In H.P. Ginsburg (Ed.), The
development of mathematical thinking. Orlando, Florida: Academic Press.

:31

2 9
Gersten, R, & Kelly, B. (1991). Coaching teachers in the effective

implementation of videodisc instruction: Four case studies. Submitted for
Publication.

Gersten, R., Woodward, J., & Darch, C. (1986). Direct instruction: A research-
based approach to curriculum design and teaching. Exceptional Children, 53
1, 17-31.

Ginsburg, H. P. (1983). The development of mathematical thinking. Orlando,
Florida: Academic Press.

Ginsburg, H.P. (1987). Assessing arithmetic. In D. Hammill (Ed.), Assessing the
abilities and instructional needs of students. Austin, TX: ProEd.

Glass, G. V. (1983). Effectiveness of special education. Policy Studies Review,
2(1), 65-78.

Goldman, S. R, Pellegrino, J. W., & Mertz, D. L. (1988). Extended practice of
basic addition facts: Strategy changes in learning disabled students. Cognition
and Instruction, 5 223-265.

Good, It H., & Salvia, J. (1988). Curriculum bias in published, norm-referenced
reading tests: Demonstrable effects. School Psychology Review, 17(1), 51-60.

Hammill, D.D. (1987). Assessing the abilities and instructional needs of students.
Austin, TX: ProEd.

Hasselbring, T.S., Goin, L. I., & Bransford, J. D. (1988). Developing math
automaticity in learning handicapped children: The role of computerized drill
and practice. Focus on Exceptional Children, 20(6), 1-7.

Hofmeister, A. (1986). Formative evaluation in the development and validation
of expert systems in education. Computational Intelligence, 2(2), 65-67.

Howard, L., & Woodward, J. P. (1990). Misconceptions in subtraction: An
analysis of secondary learning disabled students. (Tech. Rep. No. 90-1).
Eugene, Oregon: Eugene Research Institute.

Idol, L. (1986). Models of curriculum-based assessment. Rockville, MD: Aspen
Systems.

Jenkins, J. R., & Pany, D. (1978). Curriculum biases in reading achievement.
Journal of Reading Behavior, 10(4), 345-357.

Leinhardt, G. & Smith, D. (1985). Expertise in mathematics knowledge: Subject
matter knowledge. journal of Educational Psychology, 77(3), 247-271.

32

3 0

McLeod, T., & Armstrong, S. (1982). Learning disabilities in mathematics Skill
deficits and remedial approaches at the intermediate and secondary level.
Learning Disability Quarterly, s 305-311.

Pellegrino, J.W., & Goldman, S.J. (1987). Information processing and elementary
mathematics. Tournal of Learning Disabilities, 2_ o, 23-32.

Resnick, L.B., & Ford, W.W. (1981). The psychology of mathematics for
instruction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Salvia, J., & Ysseldyke,J. (1985). Assessment in special and remedial education
(3rd ed.). Boston: Houghton-Mifflin.

Silbert, J., Carnine, D., & Stein, M. (1981). Direct instruction mathematics.
Columbus, OH: Charles Merrill.

Valencia, S. W. & Pearson, P. D. (1988). Principles for classroom
comprehension assessment. Remedial and Special Education, 9(1), 26-35.

VanLehn, K. (1983). On the representation of procedures in repair theory. In
H.P. Ginsburg (Ed.), The development of mathematical thinking. Orlando,
Florida: Academic Press.

VanLehn, K. (1990). Mind bugs. Cambridge, MA: MIT Press.

Woodward, J. (in press). Procedural knowledge in mathematics: The role of
curriculum. Tournal of Learning Disabilities.

Woodward, J., & Carnine, D. (1988). Antecedent knowledge and intelligent
computer assisted instruction. Journal of Learning Disabilities, 21(3), 131-39.

Woodward, J., Freeman, S., Blake, G., & Howard (1990). TORUS: Computer-based
analysis of subtraction. [computer program]. Eugene, Oregon: Eugene
Research Institute.

Woodward, J., & Gersten, R. (in press). Innovative technology for secondary
learning disabled students: A multi-faceted study of implementation.
Exceptional Children.

Woodward, J., & Noell, J. (1991). Science instruction at the secondary level:
Implications for students with learning disabilities. Journal of Learning
Disabilities 24(5), 277-284.

Young, R.M. & O'Shea, T. (1981). Errors in children's subtraction. Cognitive
Science, 5, 152-177.

33

3 1

Ysseldyke, J. E., O'Sullivan, P. J., Thurlow, M. L., & Christenson, S. L (1989).
Qualitative differences in reading and math instruction received by
handicapped students. Remedial and Special Education, 10(1), 14-20.

34

3 2

4.0 Software Development in Special Education

35

3 3

Software Development in Special Education

John Woodward

Eugene Research Institute

John Noell

Oregon Research Institute

submitted for publication

3 4

Abstract

Over the last ten years, special educators have developed a variety of

software programs which attempt to address the unique needs of mildly

handicapped students. Much of this work has been funded by the Division of

Innovation and Development in the Office of Special Education Programs. This

article examines software development techniques used by many these special

educators through the perspective of the software lifecycle. This perspective,

which is used intimately by professional software developers, is rarely discussed

in the special education technology literattue. With rapid advancements in

computers, particularly the graphical user interface, the authors argue that

traditional programming techniques are becoming less and less viable for

software development within the typical funding levels and timelines of federal

initiatives. Instead, a trend toward the use of commercial software tools is

viewed as inevitable given these constraints. The article condudes with a brief

description of two programs recently completed in the area of advanced uses of

technology in assessment.

37

For over ten years, the Division of Innovation and Development (DID) in

the U.S. Department of Education's Office of Special Education Programs has

supported a wide range of initiatives designed to enhance the state of technology

use for handicapped individuals. Technology researchers and developers have

studied the effectiveness of computer-assisted instructional programs for special

education students; probed potential applications of technology currently used in

business and the military for the handicapped population; developed an array of

compensatory applications for physical, sensory, or cognitive impairments; and

designed innovative instructional, assessment, and multimedia systems. There

have also been an untold number of other computer-based research and

development activities in special education which have not beert funded by DID-

directed technology competitions.

A sustaining impetus for these activities comes from survey arid

observational studies conducted during the early 1980's. Researchers found that

elementary and secondary mildly handicapped students spend a disproportionate

amount of time on drill and practice programs (Becker & Sterling, 1987; Cosden,

Gerber, Semmel, Goldman, & Semmel, 1987; Rieth, Bahr, Okolo, Polsgrove, &

Eckert, 1988; Semmel & Lieber, 1986). Where technology was not used for drill

and practice, the main intent of computer use with special education students was

to improve motivation, self-confidence, and self-discipline.

A subtle, but more germane finding in these studies was the modest

variation in the type of software used (Cosden et al., 1987). It was not uncommon

to find students of all academic abilities practicing the same math facts,

vocabulary, or decoding software programs. Rieth et al. (1988) attributed part of

the infrequent use of microcomputers at the secondary special education level to

the lack of diverse, and hence, appropriate software.

38

3 5

In a broad sense, commercial software commonly available to special

education students has failed to address their individual academic needs.

Federally sponsored projects, when viewed in this light, have provided

alternatives typically unavailable from large software publishing companies.

Some special education software programs developed under these monies have

reached the commercial market, while others have remained in a prototypic

form. Nonetheless, a common theme pervading special education software

projects over the last decade has been the incorporation of assessment (Deno,

1990; Fuchs, Fuchs, Hamlett, & Stecker, 1991) or instructional design (Carnine,

1989; Hofmeister, 1990) features which address the unique needs of handicapped

students.

This article discusses the software tools commonly used to develop

computer-based programs for special education students -- specifically programs

developed for assessment and instruction of mildly handicapped students. The

limits of DID support (both in actual dollars and funding timelines), the paucity

of commercial developers for the special education market, and the complexity of

today's computers make the selection of appropriate software development tools

a fundamental issue for the special education technologist. This observation

remains valid even if programs are only developed as prototypes. Often the

decisions as to which tools are best suited for successful software development are

as complex as the assessment and/or instructional design techniques to be

embedded in the program. This artide concludes with a brief description of two

currently funded DID technology projects which, in one case uses tools that until

recently were only available in business and the military.

3D

3 6

Tools for Software Development

Programming Languages

Programming languages such as BASIC, FORTRAN, and Pascal are the

most traditional method of developing educational software programs. These

"high level" languages enable the programmer to manipulate the basic

operations of a computer in a more comprehensible manner than binary or

assembly language code. High level languages, then, represent an important

historical step in expediting the development of a software program. They move

the programmer closer to the "problem space" (i.e., what software and curriculum

developers want a program to do), and further away from the underlying

machine hardware. The logic of making programming environments

increasingly comprehensible can be extended to even higher level languages such

as authoring languages, authoring systems, and expert systems, all of which will

be discussed later.

First and second generation high level languages such as FORTRAN and

BASIC have been particularly useful vehicles for novice computing. They have

provided an economical, iterative means of processing large sets of data for

relatively simple programs. However, computing in the 1970's and, most

certainly in the 1980's, shifted toward more structured programming languages

such as Pascal, and C because of their modular structure and transportability

across computer platforms. Object-oriented programming is the most recent

advancement in high level langauges for enhancing modularity.

Writing instructional and assessment programs in a traditional, high level

language a path followed by many special education technologists has

obvious advantages. It facilitates the development of programs which are closest

to educational specifications. CAI programs in math facts (Goldman, Pellegrino,

& Mertz, 1988; Hasselbring, Goin, & Bransford, 1988), spelling (Fuchs, Hamlett, &

4 0

3 7

Fuchs, 1990; Hasselbring, 1982), sight words (Lally, 1981), vocabulary (Carnine,

Granzin, & Rankin, 1983; Johnson, Gersten, & Carnine, 1987), health education

(Carnine, Lang, & Wong, 1983; Woodward, Carnine, &'Gersten, 1988) and

reasoning skills (Collins, Carnine, & Gersten, 1987; Engelmann & Carnine, 1983)

are but some examples of successfully developed and researched special education

software. Typically, these programs contain elaborate branching schemes and

conditional forms of feedback.

Comparable development work has also occurred in computer-managed

instruction. Computer-based implementations of curriculum-based

measurement (CBM; Fuchs, Deno, & Mirkin, 1982; Fuchs, Fuchs, Hamlett, &

Hasselbring, 1987; Germann, 1985) have significantly reduced its labor intensive

aspects. Data management software that automatically graphs data, applies

decision rules, and provides feedback statements summarizing those decisions

have led to positive teacher attitudes about CBM as an efficient means of

formative evaluation (Fuchs et al., 1987).

The Graphic Interface and Increased Programming Complexity

Software development through higher level languages has been feasible

insofar as programs were not excessively complex, and they did not demand an

extensive use of graphics. However, software trends over the last two decades

have been in the direction of greater complexity and graphics as hardware costs

have rapidly declined. Graphical user interfaces (GUIs) such as the Macintosh

operating system and Microsoft Windows exemplify this movement.

These environments demand a sophisticated understanding of the

machine's operating system. They require the use of ancillary programming

tools (e.g., MPW for the Macintosh) with long learning curves, thus necessitating

a great commitment of time and effort. With few exceptions, creating programs

4 I

3 8

in these environments requires one or more experienced professional

microcomputer programmers.

Few programs have appeared in the special education literature which are

written for GUI environments (Gleason, Carnine, & Vala, 1991; Slocum, 1988;

Woodward & Carnine, 1989; Woodward, Carnine, Steely, Freeman, & Nospitz,

1988). The demands of these environments highlight the importance of the

software lifecycle as a framework for conceptualizing software development, a

topic rarely discussed in the special education technology literature.

The Software Lifecycle

Most successful software is developed, disseminated, and revised using a

multi-step procedure. These steps have been used as common operating

procedures in commercial development environments for decades, and they

comprise an implicit framework for professional developers. However, the use

of a software lifecycle in special education research and development has been far

less systematic. Figure 1 below presents the basic steps or phases of the software

lifecycle.

[insert Figure 1 about here]

Program objectives. The first step is to define the purpose of the software,

choose which hardware platform is most suitable, and select appropriate software

tools (e.g., a high level language such as C, an expert system shell, hypermedia).

For the special educator, this phase requires extensive planning and specification.

Unlike print curricula development, for example, which can be revised in an

interactive process encompassing isolated portions of the materials, software

programming initially requires a much more complete initial layout of the

problem space (i.e., exactly what a program should do and when different events

should be occur). It is rarely possible to "try out" small portions of a program.

Educators who decide to make extensive changes in the way a program works

42

3 9

after "tryouts" force extensive changes in the entire computer program, which

can severely delay or hamper the software development process.

Data flow design. The second step in the software lifecycle is the design or

layout of the data flow. Programmers have traditionally used data flow diagrams

or flow charts to accomplish this purpose. The sequence of events (e.g., how and

what data flow from one step to the next), the branching criteria, and so forth are

fully specified. Data flow diagrams are largely historical methods associated with

older, more traditional languages (e.g., Pascal). They may be less useful when

applied to artificial intelligence languages.

Nem -a. tools built around graphic environments enable the programmer to

rapidly generate "shells" of the different screens in a program, much in the way

an advertising agency uses a story board in developing television commercials.

These shells, which are chtical to educational software development, only display

the format of what a user will see at each point in the program and have very

little code associated with them. Also, no code links one screen to another in the

program (i.e., there is no way to "run" the program at this point). However, this

aspect of the software lifecycle is crucial to the final product because it previews

the program's interface. This is the first major opportunity for developers to

reach consensus on the "look and feel" of the program before the intense coding

phase begins. The flow of information between user and computer program is at

least as important as the internal flow of data within the program.

CoctiLgl. After the overall design is finalized, the third step is the actual

coding or computer programming. The first part of this step is to lay out the

design of the code, which has evolved from the preceding steps. Segments of the

program are written, and in the case of larger programs, the work is subdivided so

that several teams can work on the project simultaneously. As portions of the

code are written, they are checked for bugs (e.g., typos, syntax errors, logic errors).

4 0

4 :1

Although many educators tend to think that coding is the last phase of the

software development process, it is part of an iterative process and there is much

left to be done.

Alpha and beta testing. The program, once written and assembled, is now

available for the first level of testing, called "alpha" testing. As with any complex

task involving the creation of hundreds, if not thousands or tens of thousands of

lines of code, there are bound to be mistakes. Programmers search for bugs at a

larger scale, such as errors in the overall design or subcomponents of the program

that don't work together. One of the ultimate goals of this process is to insure

that the program is robust (i.e., that it performs faultlessly under a variety of uses

and conditions). Depending on the complexity of the program and other

variables, repeated episodes of alpha testing followed by additional programming

may be necessary.

Once the alpha testing and re-programming phase is completed, programs

are usually sent to actual end-users for a further period of testing called "beta

testing." Again, almost always, actual end-users will encounter problems not

foreseen or adequately dealt with in earlier phases. This stage also provides a

final opportunity to judge whether or not the developer's intentions match those

of a wide range of users. Mismatches or "intent bugs" mean that the program

must be modified to satisfy the demands of the eventual user. Programs that

analyze a complex array of student data but are difficult to use because data entry

is confusing is one example of an intent bug.

Additional programming is done following beta testing to rectify all

problems identified to date. The greater the complexity of the program, the

longer each of the preceding phases takes. For special educators, this is a difficult

task because there is generally not a widely installed base of users who can

sufficiently test the robustness of a program.

44

4 1

Marketing, dissemination, and technical support. The program is now

ready for dissemination. Some developers sell their products directly, while

others particularly educators use publishers or distributors. Although more

of the purchase price is retained with direct sales, the time, money, and expertise

required for successful marketing may make the publisher/ distributor option

more desirable. A critical element is the need for technical support. Obviously,

the more complex the program, the more likely that end-users will want some

kind of technical support. This is a regular feature of large software programs,

something which is rarely provided for in special educational software.

Program updating. Over time, programs are continually updated and, in

some cases, rewritten entirely. This pattern of development and refinement is

evident in the CBM software (Fuchs et al., 1982; Fuchs et al., 1991). Development

platforms have shifted from those written in high level languages to ones based

on expert system shells.

The process of developing software is usually complicated, time-

consuming, expensive, and the magnitude of the task being contemplated is often

underestimated. Companies that are in the business of creating software often

have very large teams of programmers who spend years refining a product.

Development costs can easily reach into hundreds of thousands or millions of

dollars. With large potential markets, such costs may be recouped. In special

education, the market is generally quite small and software tends to lack a broad-

based appeal so that the amortization of large development costs is not a realistic

goal. This problem is exacerbated when programs are developed with federal

dollars which are allotted over strictly controlled time periods. Figure 2 portrays

the problem of special education software development in the context of

professional software development and its lifecycle.

[Insert Figure 2 about here]

4 5

4 2

Courseware Authoring Environments

It should be evident that creating programs with high level languages

requires a considerable amount of pre-planning, expertise, and iterative

development before they are ever used on classrooms. The cost and timelines

associated with this kind of development have led educators to look at authoring

languages and systems as serious alternatives for producing simple drill and

practice and tutorial programs (Woodward & Carnine, 1983).

Authoring languages. Authoring languages have been advertised as quick

solutions to CAI for educators who are intimidated by high-level languages such

as BASIC, Pascal, or C. Languages such as Pilot (e.g., Apple Pilot and Atari Pilot)

provide a simplified code for creating modules of instruction. Their "code" or set

of commands is simpler and supposedly more intuitive, which means that it is

more readily understandable to the casual or novice programmer. For example,

"T:" signifies "text" and would be comparable to PRlNT in BASIC or WRITELN

in Pascal. With this command, one can write statements (or even leave blank

lines) to the screen for a presentation. With "A:" the program will "accept"

responses from the student. Such answers can be compared and judged correct by

an "M:" or match command.

Authoring languages have a distinct appeal for educators and instructional

designers. Freed from the minute concerns of traditional programming

particularly intensive data flow design -- users presumably can concentrate more

on the program objectives phase of the development cycle. Segments of code can

be strung together in more intuitive, linear segments.

However, a closer look at this courseware design process indicates that the

programming phase of the software lifecycle remains a critical issue. What one

trades in using an authoring language such as Pilot (as opposed to Pascal, for

example) is power for relative ease of use. As Merrill (1982) notes, "the more

46

4 3

powerful languages offer the advantage of additional capabilities when the author

is ready to go beyond the minimal subset. If an author begins by learning Pilot

and then desires greater power, he must scrap Pilot and begin by learning a new

language. Why not begin with a powerful language in the first place?" (p. 76).

The simplified nature of commercial authoring languages leads to further

problems. There is nothing in these systems that require the developer to use a

structured or modular approach to programming. For many courseware authors,

this may encourage mediocre programming strategies (Merrill, 1982).

Furthermore, authoring languages still demand a significant commitment of

time for the design of the lesson and its programming.

One study (Woodward & Carnine, 1983) of special educators who were

interested in courseware development (but were programming novices) indicated

that they were frustrated and often confused by the format and syntax of the

popular, "Pilot-like" authoring languages when they were directed to develop a

simple drill and practice program with feedback. While some of the confusion

would subside with increased use and familiarity, the person-hour investment in

programming remains. Recent research (Rode & Poirot, 1989) indicates that

teachers trained to use authoring languages, especially those who teach non-

computer related subjects, do not continue to write software programs for their

everyday instruction.

These criticisms suggest that the time educators hope to save in the coding

phase of software development -- at least for lengthy programs -- is misleading.

Problems arising in the data flow and coding steps of the project may actually

lengthen th e. time require to achieve a beta version of the program.

Authoring systems. A logical alternative for courseware development by

programming novices is the use of authoring systems. These systems allow CAI

developers to create higher quality courseware in a shorter period of time than

47

4 4

authoring languages or traditional programming languages (Graham, 1983). The

user simply answers prompts or questions which are generated by the system. By

selecting from a menu that appears in the beginning of the system, a user may

include, for example, a graphics or sound component in a lesson. The authoring

system programs and formats the input from the user. These systems, then,

allow users to create respectable courseware using a specific template.

In this sense, authoring systems solve some of the problems of courseware

development where instructional tasks are highly similar (e.g., math facts, lists of

spelling words, vocabulary drills). All too often traditional approaches to

authoring courseware frequently lead the user to perceive the learning tasks as

unique, thus missing "the opportunity to use standard formats" (Brady &

Kincaid, 1981-82, p. 117).

Yet as much as authoring systems might save developers time in the

program objectives, data flow, and coding phases, critics are quick to note the

inherent constraints of this approach to courseware development. "Users must

recognize the limits of the template, and not try to force all instruction to fit the

template. The use of templates would be more acceptable if a variety of templates

were provided for the different types of learning" (Merrill, 1982, p. 77). Thus,

what appears to be substantial time and finandal savings during the initial phases

of the software lifecycle are not realized because the educator is unable to

accurately "fit" his or her design into the existing system.

This issue is further complicated when developers construct authoring

systems with specific instructional design principles in mind. DIAL (Engelmann

et al., 1983), for example, was designed to include a variety of options for feedback,

hints, timed responses, and the recycling of missed items, and the system has

been used successfully in instructional studies involving mildly handicapped

students (Gleason, Carnine, & Boriero, 1989; Grossen & Carnine, 1990).

4 5

48

However, the precise nature of such a system even further constrains

alternate instructional strategies for courseware development. Critics have

labeled (and dismissed) DIAL-like systems as "electronically programmed

textbooks" whose pre-formatted, linear orientation offer very little in the way of

sophisticated, "intelligent" instruction (Carbonell, 1970; Merrill, 1987). This

characterization is unduly harsh insofar as many academic tasks are best

presented through sophisticated drill and practice or tutorial programs. Rather,

the criticism raises an issue of "template constraints" which is a persistent

concern for a variety of authoring systems (e.g., hypermedia, expert systems).

Newer Tools for Courseware and Assessment Programs

With the growing popularity of GUI systems in industry and education,

there has been a commensurate shift in the kinds of tools used to develop

instructional and assessment systems in special education. As stated earlier, the

GUI environment is exceedingly complex. For GUI-based special education

programs to take shape at a reasonable cost and within reasonable time

constraints, more sophisticated tools ones that are already developed and

commercially marketed need to be used.

The advantages of commercial software tools and programming

environments is manifold. Commercial versions are often quite robust, having

been alpha and beta tested well before their use in designing educational software.

Second, they frequently contain explicit links to other software programs or

peripheral devices (e.g., hypermedia and its links to CD-ROM or videodiscs).

Thus, commercial programs serve as powerful building blocks for complex

programs. Recent interest in hypermedia and expert systems in special education

bears this out.

Hypermedia. While many authoring languages and systems have been

ported over to GUI systems, hypermedia has drawn the most attention. The

4 9

4 6

concept of hypermedia has existed for almost half of a century (Bush, 1945) even

though it has only become a viable notion recently, again due to the rapid

advances in computing environments over the last two decades. Graphically

oriented computers have extended the hypertext environment to visual data or

"hypermaps" (Reynolds & Dansereau, 1990). Because of its recency, there are

relatively few documented uses to date of hypermedia in special education.

Hasselbring, Goin, and Wissick (1989) have developed hypermedia programs for

"anchored" instruction. Students work in a multi-media learning lab where

reading, spelling, and writing are computer-based activities, and reading words,

for example, are keyed to short videodisc segments through a HypercardTM

interface.

As modern authoring languages, hypermedia-based languages are

vulnerable to some of the same issues mentioned earlier. The time allocated for

coding hypermedia programs easily can be underestimated. Script-oriented

languages such as Hypertalk and Supertalk still require a level of competence that

exceeds the novice, and the eventual program necessitates extensive design and

debugging. This particularly true when the developer wishes to access external

devices such as videodisc players. The lack of built-in connections requires the

use of XCMDs and XFCNs (i.e., External Commands and External Functions).

XCMDs and XFCNs can be written in any high-level language, such as C or Pascal,

and they are called or invoked from within a hypermedia script.

Many users who are accustomed to the style of older authoring languages

and systems may be surprised to find that hypermedia programs--at least as they

are currently designed--do not easily permit highly strUctured branching schemes

which are based on student performance or other linear characteristics associated

with traditional CAI programs. These programs tend to be weak in data

management and summative profiles of student performance.

50

4 7

There is also a second, more theoretical problem with hypermedia, one

associated with its program objectives. The idea of a non-linear browsing

environment for instruction is a radical departure from the highly structured,

"CAI" character of early microcomputer authoring languages. Many researchers

(e.g., Conklin, 1987; Heller, 1990) question whether or not hypermedia can be used

for effective instruction given its main pedagogical assumptions (i.e., incidental

learning). In this respect, hypermedia suffers the same criticism as highly

structured authoring systems like DIAL (Engelmann et aL, 1983) as a template

for courseware development, it constrains the range of program objectives.

This has been most apparent to users who are accustomed to the style

(hence, program objectives) of older authoring languages and systems.

Hypermedia programs at least as they are currently designed -- do not permit

highly structured branching schemes which are based on student performance or

other linear characteristics associated with traditional CAI programs. These

programs are also weak in data management and summative profiles of student

performance.

However, all of this is seemingly less of an issue when hypermedia is used

as a direct link or "front-end" to other programs. It can be used as an interface for

CD-ROM or videodisc presentations or for commercial databases. It also has

considerable promise as a building block for complex assessment or instruction tl

programs.

Expert systems. Expert system technologies have had a broad impact in

business and, to a lesser extent, in special education over the last decade

(Hofmeister & Ferrara, 1986). Increasingly, expert systems are chosen over

structured programming languages such as Pascal and C because of the need for

specific types of representational and reasoning structures.

5;

4 8

4 9
As Figure 3 indicates, expert systems have received substantial use as

development tools in special education. Once relatively obscure technologies,

expert systems have evolved into a common choice for many computer based

applications, especially in the area of categorical dasbification and assessment.

[insert Figure 3 about here]

Expert systems are highly valued for their "distributed expertise." Once

encoded in the software program, expert advice can be applied in a variety of

settings where human experts are generally unavailable or too costly. To a large

extent, this has been the guiding principle behind the expert systems developed

for assessing handicapped eligibility by Hofmeister and his colleagues (Ferrara,

Parry, & Lubke, 1985; Parry & Hofmeister, 1986; Prater & Althouse, 1986).

Expert systems also provide a distinct advantage in terms of the software

lifecycle. Once the program is designed, the coding phase of the project (i.e., the

development of the rules) is relatively brief. Thus, rather than "starting from

scratch" and writing an entire program in an artificial intelligence language, such as

LISP or Prolog, the developer moves very quickly from the design phase to the

alpha and beta test stages. Recent improvements in graphical interfaces for expert

systems further enable developers to concentrate on the design and alpha and beta

testing phases of a project.

Hofmeister (1986) and others have stressed the importance of the alpha and

beta test phases as means of determining agreement between human experts and

the computer program. The extent to which alpha and beta testing act as a means

of validating principles developed in the design phase (rather than correcting

syntax errors and programming logic) underscores an important aspect of expert

systems: they are easy to misuse and/or underutilize.

Expert systems, by name, are designed to capture and manipulate expertise

on a given topic, and the brief history of these systems indicates a clear shift

toward systems which operate on a narrowly defined knowledge base (Bowerman

& Glover, 1988; Chandrasekaran & Mittal, 1984; Hayes-Roth, Waterman, & Lenat,

1983). Thus, expert systems are only as good as the knowledge (e.g., its detail,

accuracy) they encode, forcing system designers to closely examine and determine

if the domain is well-ordered, rich in information, and amenable to clear rules or

heuristics (Alvey, Myers, & Greaves, 1985; Bramer, 1982). This also implies that

expert systems are often enhanced when linked to databases.

Unfortunately, the lure of expert systems sometimes has misled

developers; the technology has often eclipsed an adequate analysis of the

knowledge domain. The considerations made at the design phase, particularly

the match between an expert system and a given domain, are critical to its success.

In this respect, the limits of expert systems are similar to the template constraints

mentioned earlier. The developer may attempt to "fit" a poorly designed or

conceptualized educational problem into an expert system shell.

Innovative Programs in Assessment and Technology

The two programs discussed below were developed for a recently funded

DID competition in advanced uses of technology in assessment. These programs

reflect contemporary trends in software development. The first program, TORUS

(Woodward, Freeman, Blake, & Howard, 1990), uses an object oriented expert

system in conjunction with a database to analyze misconceptions in subtraction.

The Social Skills Assessment Program (Irvin et al., in press), the second program,

is a multimedia system, employing a hypermedia front-end linked to a videodisc

program.

TORUS

TORUS was designed to build upon earlier mathematical assessment

programs, particularly BUGGY (Brown & 3urton, 1978; VanLehn, 1982, 1990).

The BUGGY project went well beyond earlier work in simply classifying error

53

5 0

patterns (e.g., Ash lock, 1986; Engelhardt, 1977; West, 1971). It demonstrated that

even on a seemingly rudimentary task such as subtraction, students actively

constructed interpretations of what they were taught. A cognitive model of the

many deep-seated patterns of misconceptions was coded into BUGGY using the

LISP programming language.

BUGGY researchers eventually documented over 3000 possible bugs

(Burton, 1981), many of which are extremely unique, if not exotic. The vast of

array of bugs, some of which were theoretical in nature, stemmed from

algorithms in the original BUGGY program which generated a "best possible fit"

explanation of response patterns to computational subtraction problems. Lower

level bugs were combined to explain the widest range of problems, often yielding

highly idiosyncratic bugs (Brown & Burton, 1978). Of these potential bugs, 157

distinct sets of bugs have been described, with only half of them occurring more

than once (VanLehn, 1982).

TORUS developers pursued a different strategy by closely analyzing data

from over 200 students with learning disabilities to determine which bugs were

empirically based and common enough to merit incorporating in the TORUS

program. Almost half of the project's timeline was devoted to the program

objectives phase of the software lifecycle. Had the developers then attempted to

create the program in a high level language such as C, it never would have been

completed, much less alpha tested within the funding period.

Commercial products as "building blocks" for TORUS. To expedite the

coding phase of TORUS, the developers chose commercial programs for the

Macintosh. Creating movable windows, scroll bars, and pop-down menus for the

Macintosh, like any other GUI, requires thousands of lines of code. However, the

use of F0XBaSeTM, a widely used commercial database, enabled the developers to

quickly create a "Mac-like," menu-driven interface that was tailored to the

54

5 1

TORUS system. Coding in FOXBaSeTM for this portion of the program took

approximately two weeks.

Nexpert ObjectTM was used as the expert system engine for the program. As

an object oriented system, Nexpert ObjectTM enabled programmers to quickly

conceptualize and code rule networks. This expert system also can be linked to

commercial databases such as FOXBaSeTM and programming languages like C.

Both of these links were established so that a wide range of users could readily

enter data into TORUS and the final results could be processed as database reports.

Complete details of the TORUS program appear elsewhere (Woodward, 1992).

The role of alpha and beta testing. A common evaluation of expert systems

is found in "real world" testing (Bowerman & Glover, 1988; Hayes-Roth et al.,

1983; Hofmeister, 1986). This becomes increasingly feasible only if the coding

phase of the program is reasonable and rules can be easily adapted to field-test

data. Nexpert ObjectTM, through its object orientation and robust design,

facilitated field testing with more than 200 middle school students with learning

disabilities (Howard & Woodward, 1990).

In the alpha phases of the program, data from many students were run

through the program so that developers could refine TORUS's diagnostic scheme

to better match human expert judgment. Eventually, a study of 30 students

conducted late in the beta phase of development showed a .90 level of agreement

between the human expert and the TORUS program. A second study involving

TORUS diagnoses and an experienced special education teacher showed

agreement on 21 of 22 cases (C2 = .09; p = .76).

While TORUS remains a prototype of an advanced assessment system, it is

currently used as a key dependent measure in several research projects. The

extent to which TORUS can be implemented in day-to-day classroom settings is a

complicated issue. Theoretically, it is not clear if teachers should use TORUS

5 2

results to attend to each student's misconception (a.k.a. the "brush fire" approach)

or teach mathematics more conceptually and use TORUS results as a broad index

of understanding. On a practical level, the runtime versions of Nexpert ObjectTM

and FoxBaseTM are relatively expensive. Unless the program is rewritten in a

high level language, something well-beyond the financial resources of the current

developers, it is unlikely that it will be affordable to end users.

Social Skills Assessment Progm

The Social Skills Assessment Program or SSAP (Irvin et al., in press) was

developed to enable teachers to rapidly diagnose specific social skills deficits in

mildly handicapped students, especially those entering the mainstream. These

students often have difficulties in both peer relations and teacher relations.

Efficient remediation of such deficits requires a precise diagnosis. For busy

teachers and overburdened school systems, it is often difficult, if not totally

impractical, to conduct the behavioral assessments and observations necessary to

determine the exact circumstances and factors involved with the problems

associated with a specific child. The SSAP enables teachers to make such

assessments more easily and efficiently.

Three basic skill areas are assessed: peer group entry, responding to teasing

and provocation, and compliance with teacher directives. The assessment

program utilizes video-based stimuli to present typical school situations such as

scenes of children playing or teachers looking directly at the subject (i.e. into the

camera). The on-screen figures present situations and statements or requests. A

student may make a response by touching the video display, which is equipped

with a touch-sensitive screen. The timing and location of touches are analyzed by

the computer program which then determines the next situation (i.e., video

segment) that should be presented. Quick random access to any segment of

5 6

5 3

assessment video is made possible through the use of a computer-controlled

videodisc player.

Designed to present stimuli that are as ecologically appropriate as possible,

the SSAP is unique in being a stand-alone video assessment system. Previous use

of video stimuli for social skills assessment (e.g., Dodge, l9xx) relied on the

concurrent presence of a trained interviewer. The SSAP presents all necessary

instructions for use and branches in response to the subject's input. The ability to

function without the presence of an adult interviewer or supervisor was

considered essential. The demand characteristics placed on a subject when

reporting choices and rationales to an adult observer clearly are not the same as

those experienced in naturalistic settings.

Creating a stand-alone assessment system meant it was necessary to

simultaneously develop appropriate video stimuli and the computer program to

control the video presentations. Because coordination of these activities was

essential to meeting tight deadlines and fixed budgets, extreme care was given to

the program objectives and data flow design stages of development. Once initial

specifications were set, extensive use was made of logic flowcharts in the design of

data flow. These flowcharts were continually compared to initial design

specifications and iteratively revised. Once data flow design was completed, the

initial coding and video production occurred simultaneously.

Due to the unique nature of both the video stimuli and touch-

screen/videodisc player hardware, it was clear that some portions of the program

would require a large number of alpha and beta-testing iterations, while others

would not. Furthermore, it was important that minor changes be easy to

accomplish under field conditions, with limited expertise. Therefore, the

researchers chose to use Super Card (a HyperCard clone) and Macintosh

computers. These environments allowed for shortening the iterative

57

5 4

development cycles. Shortening the cycles saved time and money; using a

simpler environment for simpler tasks avoided the use of expensive professional

programmer time for simple changes.

The tasks that could not be accomplished directly with Supertalk, the

Supercard"scripting" (i.e., programming) language (such as controlling the

videodisc player, gathering student responses from the touch sensitive screens)

were written in Pascal, and invoked from the Super Card script (as XCMDs and

XFCNs). This required the expertise of a professional programmer.

The careful separation of the design and coding responsibilities was a key

feature of this project. In traditional software development schemes, involving

programmers in all phases of design has always been crucial. In contrast, re-

designs of the assessment component (involving major rearrangements) were

accomplished without re-writing high-level code (IN iLh subsequent debugging of

the program). Specific start/stop poir ts for the video stimulus segments were

changed in the field by non-programmers with minimal training (e.g., elements

of the graphic interface were moved to now positions on the screen). The

professional programmer's time was reserved for tasks outside the Supertalk

domain, or where speed of execution or complexity of data manipulation was

critical and hence demanded the power that only a high level language could

provide.

As with TORUS, a hybrid approach to software development, making use

of commercially available "building blocks", allowed the SSAP to be designed,

coded, alpha-tested and beta-tested in a short time with limited expenditures.

Expert systems, database programs, and scripting environments that allow access

to high-level programs but which do not require all code to be created in the high-

level language, represent the future direction for software development under

conditions of severely limited time and money.

5 5

Summary

Software development in special education is constrained by limited

federal funding and the lack of a broad-based commercial market, a condition

which is unlikely to change in the near future. Recent federal initiatives have

reflected a growing realization that sophisticated software programs cannot be

developed under one or two-year funding cycles. Instead, development of

prototypes has become the most viable avenue for innovation.

Prototypes, by definition, do not place much emphasis on the latter phases

of the software development lifecyle (i.e., marketing, dissemination, and

technical support; program updating), allowing the special education technologist

to devote much more time to program objectives, data flow design, coding, and

alpha and beta testing. One could further argue that to successfully embed

instructional design or assessment principles into the prototype, an inordinate

proportion of time is concentrated in the program objectives and alpha and beta

testing phases. With limited fiscal and/or timeline constraints, commercial

software tools such as the ones described in this article are becoming the most

viable means of completing federally-funded software projects. These tools

function as robust building blocks which move the developer toward a realistic

product for the special education population.

59

5 6

References

Alvey, P. L., Myers, C. D., & Greaves, M. F. (1985). An analysis of the problems
of augmenting a small expert system. In M. A. Bramer (Ed.) Research and
development in expert systems. Cambridge: Cambridge University Press.

Ash lock, R. B. (1986). Error patterns in computation. Columbus, OH: Charles
Merrill.

Becker, H., & Sterling, C. (1987). Equity in school computer use: National data
and neglected considerations. Journal of Educational Computing Research,
3(3), 289 - 311.

Bowerman, R. G., & Glover, D. E. (1988). Putting expert systems into practice.
New York: Van Nostrand Reinhold Company.

Bramer, M. A. (1982). A survey and critical review of expert systems research.
In D. Michie (Ed.) Introductory readings in expert systems. New York:
Gordon and Breach Science Publishers.

Brown, J.S. & VanLehn, K. (1982). Towards a generative theory of "bugs." In
T.P. Carpenter, J.M. Moser, & T.A. Romberg (Eds.), Addition and
subtraction: A cognitive perspective. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Burton, R.B. (1981). DEBUGGY: Diagnosis of errors in basic mathematical
skills. In D.H. Sleeman & J.S. Brown (Eds.), Intelligent tutoring systems.
London: Academic Press.

Burton, R., & Brown, J. (1978). Diagnostic models for procedural bugs in basic
mathematic skills. Cognitive Science, / 155-168.

Bush, V. (1945). As we may think. Atlantic Monthly, 176(1), 101-108.

Carbonell, J. (1970). AI in CM: An artificial intelligence approach to computer
assisted instruction. IEEE Transactions on Man-Machine Systems, MMS,
11(4), 190-202.

Carnine, D. (1989). Teaching complex content to learning disabled students: The
role of technology. Exceptional Children, 55(6), 524-533.

Carnine, D., Granzin, A., & Rankin, G. (1983). Learning vocabulary.
[Computer program], Teaching Wares, Eugene, Oregon.

Carnine, D., Lang, D., & Wong, L. (1983). Health ways. [Computer program],
Teaching Wares, Eugene, Oregon.

60

5 7

5 8

Chandrasekaran, B., & Mittal, S. (1984). Deep versus compiled knowledge
approaches to diagnostic problem solving. In M. J. Coombs (Ed.)
Developments in expert systems. London: Academic Press.

Collins, M., Carnine, D., & Gersten, R. (1987). Elaborated corrective feedback
and the acquisition of reasoning skills: A study of computer-assisted
instruction. Exceptional Children, 54 (3), 254-262.

Conklin, J. (1987). Hypertext: An introduction and survey. IEEE Computer, 2(9),
1741.

Cosden, M. A., Gerber, M. M., Semmel, D. S., Goldman, S. R., & Semmel, M. I.
(1987). Microcomputer use within micro-educational environments.
Exceptional Children, 53 (5), 399-409.

Deno, S. (1990). Individual differences and individual difference: The essential
difference of special education. Journal of Special Education, 24(2), 160-173.

Ellis, E. S., & Sabornie, E. J. (1986). Effective instruction with microcomputers:
promises, practices, and preliminary findings. Focus on Exceptional
Children 19 (4), 1-16.

Engelhardt, J. M. (1977). Analysis of children's computational errors: A
qualitative approach. British Journal of Educational Psychology, Eh 149-54.

Engelmann, S., & Carnine, D. (1983). Reasoning skills I. [Computer program],
Engelmann-Becker Corporation, Eugene, Oregon.

Engelmann, S., Carnine, D., & Weiss, A. (1983) Direct instruction authoring
language. [Computer program], Engelmann-Becker Corporation, Eugene,
Oregon.

Ferrara, J. M., Parry, J. D., & Lubke, M. M. (1985). Expert systems authoring
tools for the microcomputer: Two examples. Educational Technology,
April, 1985, 3941.

Fuchs, L. S., Allinder, R. M., Hamlett, C. L., and Fuchs, D. (1990). An analysis
of spelling curricula and teachers' skills in identifying error types. RASE,

11 (1), 42-52.

Fuchs, L. S., Deno, S. L., & Mirkin, P. K. (1982). Data-based program
modification: A continuous evaluation system with computer software to
facilitate implementation. Journal of Special Education Technology, 6 (2),

50-57.

61

Fuchs, L S., Fuchs, D., Hamlett, C. L, & Hasselbring, T. S. (1987). Using
computers with curriculum-based monitoring: Effects on teacher
efficiency and satisfaction. Journal of Special Education Technology, 8 (4),
14-27.

Fuchs, L., Fuchs, D., Hamlett, C., & Stecker, P. (1991). Effects of curriculum-based
measurement and consultation on teacher planning and student
achievement in mathematics operations. American Educational Research
Journal, 28(3), 617-641.

Germann, G. (1985). SHERI [Unpublished computer program]. Sandstone,
MN.

Gleason, M., Carnine, D., & Boriero, D. (1989). Improving CAI effectiveness
with attention to instructional design in teaching story problems to mildly
handicapped students. Journal of Special Education Technology, 10(3),
129-136.

Gleason, M., Carnine, D., & Vala, N. (1991). Cumulative versus rapid
introduction of new information. Exceptional Children, 57(4), 353-358.

Goldman, S. R., Pellegrino, J. W., & Mertz, D. L. (1988). Extended practice of basic
addition facts: Strategy changes in learning disabled students. Cognition and
Instruction,1 223-265.

Graham, N. (1983). The mind tool. St. Paul: West Publishing Company.

Grossen, B., & Carnine, D. (1990). Diagramming a logic strategy: Effects on
more difficult problem types and transfer. Learning Disability Quarterly,
13, 168-182.

Hasselbring, T. S. (1982). Remediation spelling problems of learning-
handicapped students through the use of microcomputers. Educational
Techonology, 22(2), 31-32.

Hasselbring, T. S., Goin, L. I., & Bransford, J. D. (1988). Developing math
automaticity in learning handicapped children: The role of computerized
drill and practice. Focus on Exceptional Children, 20 (6), 1-7.

Hasselbring, T. S., Goin, L. I., & Wissick, C. (1989). Making knowledge
meaningful: Applications of hypermedia. Journal of Special Education
Technology, 10 (2), 61-72.

Hayes-Roth, F., Waterman, D., & Lenat, D. (1983). Building expert systems.
Reading, MA: Addison-Wesley.

62

5 9

Heller, R. S. (1990). The role of hypermedia in education: A look at the
research issues. Tournal of Research on Computing in Education, 22 (4),
431-441.

Hofmeister, A. (1986). Formative evaluation in the development and
validation of expert systems in education. Computational Intelligence,
2(2), 65-67.

Hofmeister, A. (1990). Individual differences and the form and function of
instruction. Journal of Special Education, 24(2), 150-159.

Hofmeister, A. M., & Ferrara, J. M. (1986). Expert systems and special
education. Exceptional Children, 53(3), 235-239.

Howard, L., & Woodward, J. P. (1990). Misconceptions in subtraction: An
analysis of secondary learning disabled students. (Tech. Rep. No. 90-1).
Eugene, Oregon: Eugene Research Institute.

Irvin, L., Wlaker, H., Noell, J., Singer, G., Irvine, B., Marquez, K., & Britz, B.
(in press). Measuring children's social skills using microcomputer-based
videodisc assessment. Behavior Modification.

Johnson, G., Gersten, R., & Carnine, D. (1987). Effects of instructional design
variables on vocabulary acquisition of LD students: A study of computer-
assisted instruction.. Journal of Learning Disabilities, 20(4), 206-213.

Jones, K. M., Torgesen, J. K., & Sexton, M. A. (1987). Using computer guided
practice to increase decoding fluency in learning disabled children: A
study using the Hint and Hunt I program. Journal of Learning Disabilities,
20 (2), 122-128.

Lally, M. (1981). Computer-assisted teaching of sight-word recognition for
mentally retarded school children. American Journal of Mental
Deficiency, m, 383-388.

Merrill, M. D. (1987). Prescriptions for an authoring system. Journal of
Computer-Based Instruction, 14 (1), 1-10.

Nelson, T. (1967). Getting it out of our system. In G. Schecter (Ed.),
Information retrieval: A critical view. Washington, D.C.: Thompson
Books.

Parry, J. D., & Hofmeister, A. M. (1986). Development and validation of an
expert system for special educators. Learning Disability Quarterly, 9(2), 124-
132.

63

6 0

Prater, A. & Althouse, B. (1986). LD. Trainer [computer program]. Logan,
Utah: Utah State University.

Prater, M. A., & Ferrara, J. M. (1990). Training educators to accurately classify
learning disabled students using concept instruction and expert system
technology. *Journal of Special Education Technology, 10 (3), 147-156.

Reigeluth, C. M. (1979). TICCIT to the future: Advances in instructional
theory for CAI. Journal of Computer-Based Instruction, 6 (2), 40-46.

Rieth, H., Bahr, C., Okolo, C., Polsgrove, L., & Eckert, R. (1988). An analysis of
the impact of microcomputers on the secondary special education
classroom ecology. Journal of Educational Computing Research, 4 (4), 425-
441.

Reynolds, S. & Dansereau, D. (1990). The knowledge hypermap: An
alternative to hypertext. Computers in Education, 14(5), 409416.

Roblyer, M. D. (1981). Instructional design versus authoring of courseware:
Some crucial differences. AEDS Journal, Summer 1981, 173-181.

Rode, M., & Poirot, J. (1989). Authoring systems--are they used? Journal of
Research on Computingin Education, 22 (2), 191-198.

Semmel, M. I., & Lieber, J. A. (1986) Computer applications in instruction.
Focus on Exceptional Children, 18 (9), 1-12.

Slocum, T. (1988). IS graphics: Instructional system for graphic facts.
[Computer program], Seattle: Experimental Education Unit, University of
Washington.

VanLehn, K. (1982). Bugs are not enough: Empirical studies of bugs,
impasses and repairs in procedural skills. Journal of Mathematical
Behavior, 3(2), 3-72.

Walker, H., Irvin, L., Noell, J., & Singer, G. (in press). A construct score
approach to the assessment of social compentence: Rationale,
technological considerations, and anticipated outcomes. Behavior
Modification.

West, T. A. (1971). Diagnosing pupil errors: Looking for patterns. The
Arithmetic Teacher, 18 467-69.

Woodward, J. P., & Carnine, D. W. (1989). The Genisys program: Linking
content area knowledge to problem solving through technology-based
instruction. Journal of Special Education Technology, 10 (2), 99-112.

64

6 1

6 2

Woodward, J., & Carnine, D. (1983). What do today's authoring languages
and authoring systems mean to today's educators? [Unpublished
manuscript], University of Oregon, Eugene.

Woodward, J., amine, D., & Gersten, R. (1988). Teaching problem solving
through computer simulations. American Educational Research Journal,
25(1), 72-86.

Woodward, J., Carnine, D., Steeley, D., Freeman, S., & Nospitz, C. (1988).
Genisys. [Unpublished computer program], Eugene, Oregon.

Woodward, J., Freeman, S., Blake, G., & Howard (1990). TORUS: Computer-
based analysis of subtraction. [computer program]. Eugene, Oregon:
Eugene Research Institute.

Yin, R. K., & Moore, G. B. (1987). The use of advanced technologies in special
education: Prospects from robotics, artificial intelligence, and computer
simulation. Tournal of Learning Disabilities, 20 (1), 60-63.

Young, R.M. & O'Shea, T. (1981). Errors in children's subtraction. Cognitive
Science 5, 152-177.

65

6 3

Figures

66

Figure 1

Common Steps in the Software Lifecycle

Program Planning and Specification

Data Flow Design

Coding (Computer Programming)

Alpha and Beta Testing

Marketing/ Dissemination and Technical Support

Program Updating

Figure 2

COMMERCIAL SOFTWARE DEVELOPMENT

Program
Planning & Data Flow
Specification Design Coding

Alpha & Marketing/ Dissemination Program
Beta Testing & Technical Support Updating

_ I _ 1 .
? **

FEDERALLY FUNDED DEVELOPMENT

63

SYSTEM

Figure 3

Expert Systems in Special Education

AUTHOR(S) PURPOSE

Math Test Interpreter
Class.2
Behavior Consultant
LD.Trainer
SNAP
Mandate Consultant
CAPER

TORUS
CBM Ex Sys

Lubke, 1985

Ferrara, Parry, & Lubke, 1985

Ferrara & Serna, 1985
Ferrara & Prater, 1985
Haynes & Lubell, 1986

Parry & Hofmeister, 1986

Haynes, 1988
Woodward et al., 1990
Fuchs et al, 1991

diagnosis/ prescription
classification
classification
classification
teachei training
regulation compliance
planning/ placement
math assessment
assessment/ consultation

63

64

5.0 Detailed Comparison of BUGGY and TORUS

The BUGGY Project

The influence of BUGGY Project (J. S. Brown & Burton, 1978; J. S. Brown & Van

Lehn, 1982; Burton, 1981; Van Lehn, 1982, 1988) in computer-based education, cognitive

psychology, and mathematics education cannot be understated. The project has been

cited or discussed repeatedly in key texts on intelligent tutoring systems (Mandl &

Lesgold, 1988; Sleeman & J. S. Brown, 1981; Wenger, 1987), mathematics (Carpenter,

Moser, & Romberg, 1982; Ginsburg, 1983; Resnick & Ford, 1981; Schoenfeld, 1985) and

in innumerable articles on cognition, instruction, and assessment. Its influence equally

extends to special education, either as a model for technology development (e.g.,

Hofmeister & Lubke, 1986; Jones, 1984; Roberts, 1984) or instruction and assessment

(e.g., Cawley, 1985; Ferrara, 1987; Goldman, 1989; Pellegrino & Goldman, 1987;

Woodward & Carnine, 1988).

Throughout the project and the evolving versions of the BUGGY program (i.e.,

BUGGY, DEBUGGY, IDEBUGGY), researchers attempted to fully map the specific

misconceptions that might arise in a student as he or she learned subtraction.

Researchers attempted to apply a cognitive model that explained a wide range of error

patterns. In this sense, the BUGGY project went well beyond earlier work in simply

classifying error patterns (e.g., Ashlock, 1976; Cox, 1975; Engelhardt, 1977; Harvey &

Kyte, 1965; Roberts, 1968; West, 1971). Figure 1 below is a sample of the kinds of errors

a student might make when solving a range of subtraction problems. Problems that are

incorrectly answered are in circled. These problems, taken from Van Lehn (1982), fully

display the difficulty in rendering a systematic analysis across a set of problems. After a

very careful analysis, the reader may be able to detect a pattern and proffer one or more

hypotheses as to the source of these incorrect answers (i.e., what kind of

misconceptions or "bugs" that lead the student to answer problems in a consistent, albeit

incorrect, manner).

70

65

Figure 1

306 80 183 702 3005 7002 34 251

- 138 4 - 95 - 11 28 - 239 14 - 47

78 76 88 591 1087 4873 24 244

Generally, teachers would describe the student's source of error as one having to

do with borrowing, particularly when zeros are present (Van Lehn, 1982). At a more

precise level, the student systematically misses those problems where he or she must

borrow from a zero (this occurs in the first, fourth, fifth, and sixth problems). One could

use this information that a student has difficulty borrowing across zeros to predict

not only the kinds of problems that student would miss (e.g., 408 - 219), but even the

answers to such problems. This kind of analysis may be within the kenof a well-

trained diagnostician whose job is dedicated to error detection. It is, however, very far

beyond the pragmatic limits that general or special education teachers (or aides) face

when grading cotmtless worksheets for as many as 30 students in a class.

BUGGY, as a unique assessment instrument, provided a computer-based system that

could accomplish such an intricate diagnostic task. The system was able to analyze

answers to 30 subtaction problems and detect common as well as highly unique patterns

of misconceptions. As a computer-based system, it was able to perform these analyses for

hundreds of students at a time. Criteria for a bug was its presence in at least three

different problems in a set. Some of these misconceptions or bugs were so rare that even

though the generative model behind BUGGY predicted that they existed, six were not

found in the research (Brown & Van Lehn, 1982).

Nonetheless, A. L. Brown and Campione (1986) specifically refer to the BUGGY

project as the kind of system that could enhance teaching, linking assessment to

informed instruction. BUGGY demonstrated that even on seemingly perfunctory tasks

'7 I

66

such as an arithmetic operation, students actively constructed interpretations of what

they were taught even in spite of direct instruction that attempted to teach one

method consistently. This active construction of alternative algorithms has even been

documented when regular and LD students learn math facts (Goldman, Pellegrino, &

Mertz, 1988; Resnick & Ford, 1982).

From an instructional point of view, BUGGY underscored the distinction

between syntax and semantics in arithmetic. That is, many students and

especially those with learning disabilities often work problems superficially,

only attending to the surface or syntactic features of the problem without

attending to what these manipulations mean at a semantic level. In subtraction,

BUGGY documented how students endlessly "push around symbols" with little

conceptual understanding of what they were doing (Burton, personal

communication, 1990; Doyle, 1988; Collins, J. S. Brown, & Newman, 1989). The

consequences of this kind of daily symbol pushing are especially dire for

learning disabled students, who in mathematics at least may spend the

majority of their school lives completing worksheets on basic operations from

addition to fractions.

Limitations of the BUGGY project. As a unique contribution to cognitive

science, BUGGY was not solely concerned with educational problems. Rather,

BUGGY is often described by its authors as an attempt at generative theory a

precise, theoretical explanation of bug origins, of what bugs should and shouldn't

exist in a procedural domain such as subtraction, and what bugs will exist in a

procedural skill yet to be analyzed (J. S. Brown & Van Lehn, 1982).

Eventually, this research led to an exceedingly complex model of how bugs

be they common or highly unique drive computational errors, and how some

students continually "repair" their mistakes by creating new procedures or bugs

when they realize that a certain procedure is not working. This cataloguing of buggy

67

behavior has led to a description of over 3000 possible bugs (Burton, 1981), many of

which are extremely unique, if not exotic. Of these potential bugs, 157 distinct sets of

bugs have been described, with only half of them occurring more than once (Van

Lehn, 1982). Figure 2 below is a sample of such bugs described by Van Lehn.

Figure 2

Sample of Unusual Bugs from Van Lehn (1982)

BORROW INTO ONE = TEN (When a borrow is caused by a 1, the student
changes the 1 into a 10 instead of adding 10 to it. For example, 71-38 =
32).

DECRMENTING THE TOP LEFT IS EQUAL TO 0 OR 1 = EIGHT (When
borrowing from 0 or 1, changes the 0 or 1 to 8; does not decrement digit
to the left of the 0 or 1. For example, 4013-995 = 3778).

N-N = 9 AND DECREMENT 'ME NEXT COLUMN (When a column has the
same number on the top and the bottom the student writes 9 as the
answer and decrements the next column to the left even though
borrowing is not necessary. For example, 94-34 = 59).

STUTTER SUBTRACTION (Whm there are blanks in the bottom number, the
student subtracts the leftmost digit of the bottom number in every
column that has a blank. For example, 4369 - 22 = 2147).

SUBTRACTION BY COPYING FROM THE TOP AND BOTTOM NUMBERS
(The student does not subtract. Instead, he copies digits from the
exercise to fill in the answer space. He copies the leftmost digit from the
top number and the other digits from the bottom number. He will give
answers like this: 648 - 231 = 631).

The unusual character of so many of these kinds of bugs help satisfy the

requirements of a generative theory. They helped complete a cognitive map that

explained the kinds of possible errors a student might make in completing

73

68

subtraction problems. However, there are of little practical use to educators

either in the field as practitioners or researchers who are attempting to link

assessment to improved or informed instructional practices. Attempts by those

on the BUGGY project to convey subtraction bugs in the complex form as seen in

Figure 2 (Friend & Burton, 1981) were largely unsuccessful (Burton, personal

communication, 1990; Van Lehn, 1982).

A second, and perhaps more serious concern with results from the

BUGGY project was the fact that analyses of misconceptions or bugs were

restricted to the computer system itself. That is, there was little systematic effort

in observing instructional patterns in classrooms or interviewing and/or

watching students as they worked subtraction problems. Very little was done to

explain the origin of these misconceptions in a classroom context. Further, there was

little if any longitudinal research conducted to find the stability of bugs or how

they changed as a ftmction of different instructional methods (Van Lehn, 1988).

Again, the main focus of the BUGGY project as a generative psychological theory

and not direct educational applications.

Finally, the student data base for the project, though considerable in size,

was drawn from a very heterogeneous population of students. An original

sample of 1325 tests were culled from fourth, fifth, and sixth grade Nicaraguan

students (Brown & Burton, 1978; Van Lehn, 1982). Later, 288 American sixth

grade students from an upper class community (Haviland, 1979) were added to

the BUGGY data base. When the second version of BUGGY was created (i.e.,

DEBUGGY), 849 students from south San Francisco participated. In all of these

studies, no attempt was made to analyze bug patterns by ability. This

shortcoming is important, given the likely hypothesis that remedial and learning

disabled students would be more prone to systematic, long term bugs. Based on

74

69

these limitations and an array of other design considerations, the TORUS

program (Woodward, Freeman, Blake, & Howard, 1990) was designed.

The TORUS Program

The explicit intention of TORUS was to build upon the BUGGY research

agenda (accounting for some of the deficiencies discussed above) and to explore

those features proposed in the latter phases of the BUGGY project. Figure 3

below sunimarizes the innovative features of the TORUS program.

Figure 3

Innovative Features of the TORUS Program

Interactive Problem Generation to Confirm Bug Hypotheses

Criterion Performance Scores as Well as Bug Diagnoses

Focus on the Most Common Bugs

Direct Linkage of Bugs to Instructional Remedies

Field Tested with Learning Disabled Students

Microcomputer Based Program

Interactive Problem Generation. One of the most engaging ideas proposed

near the end of the BUGGY project was an interactive diagnostic system later

named IDEBUGGY (Burton, 1981). Rather than operate from a fixed set of

subtraction problems, many of which may not have been at the appropriate

instructional level for the student, Burton (1981) proposed a system that would

continually generate problems based on a set of bug hypotheses. Once the

75

70

student completed a screening measure, a program such as IDEBUGGY would

construct a set of hypotheses and judiciously create problems that would confirm

or disconfirm each bug hypothesis. IDEBUGGY was a prototype of this kind of

innovative diagnostic system one similar in design to many other artificial

intelligence diagnostic systems (Sleeman & Brown, 1981; Wenger, 1988).

However, IDEBUGGY was never fully completed.

The TORUS program incorporated interactive problem generation by first

testing students on a wide range of subtraction problems (Session 1) and then

generating a second set of problems tailored to that student's level of competence

and/or potential misconceptions. Session 1 contains 30 items representing the

range of subtraction problems that intermediate and middle school learning

disabled students commonly face. Once answers to the problem set are entered,

TORUS systematically analyzes correct and incorrect problems for bug patterns

(e.g., the student is not borrowing, the student does not know how to solve the

problem when he or she gets to the left most digit, the student cannot borrow

when zeros are present). Based on this extensive analysis, another set of 30

problems are generated (Session 2). Problems mplicated those where a possible

bug exist (e.g., borrowing from zero in any place but the ones column: 104 - 35)

and slightly altered problems that would strengthen the hypothesis (e.g., 124 -

35). If a student's misconceptions are restricted to the presence of zeros, then he

or she should miss the first type of problem (104 - 35) and not the second type

(124 - 35).

Criterion Performance Scores. Students do not always err in systematic

ways. Inconsistencies, or what came to be known as "slips" in the BUGGY

research (Van Lehn, 1982, 1988), were less predictable errors and emanated from

fatigue, carelessness, and other sources of inconsistency. Versions of the BUGGY

project (i.e., DEBUGGY) were unable to provide informative information about

78

71

the student because the performance could not be diagnosed as buggy. It is for

this reason that Van Lehn (1982) and others (e.g., Friend, 1981) suggest that a

criterion or subskill-based diagnosis should be added to a BUGGY-type program.

This concern for alternate diagnoses, ones that would be educationally

meaningful, was a foremost concern when TORUS was designed. TORUS has

the potential of providing at least three levels of diagnosis: (a) bugs (e.g., the

student consistently errs when borrowing from a zero) (b) systematic errors on

problem types (e.g., problems with more than one borrow), and (c) descriptive

analyses (e.g., percent correct on total test, on borrowing problems, on "large"

problems ones with three or four digits). These different levels of diagnoses

will help provide meaningful diagnoses for a wide range of student performance.

Focus on Common Bugs. Designed for a special education

environment, TORUS avoided cataloging the arcane or exotic bugs that were part

of the BUGGY data base (see Table 1.2.1 above). It was felt, as expressed by Van

Lehn (1982) and Burton (personal communication, 1990), that these types of bugs

would have little import for educators whose need for diagnostic information is

at a much broader level (Woodward & Carnine, 1988). Therefore, the algorithms

used to find bugs in TORUS are based on two sources: (a) those documented as

the most common in the literature (e.g., Brown & Burton, 1978; Van Lehn, 1982;

Young & O'Shea, 1981) and (b) those found in a sample of approximately 90 sixth

through eighth grade learning disabled students receiving special education

instruction in mathematics (Howard & Woodward, 1990).

This latter analysis of learning disabled students revealed that 53 percent

of the students had systematic misconceptions (i.e., bugs) or a predicatable errors

in certain types of problems (e.g., borrowing involving zeros). Furthermore,

mean performance overall for these students was at a distressingly low level 69

percent. In other words, middle school learning disabled students, on average,

77

72

still do not perform subtraction problems at a level anywhere near mastery and

exhibit some kind of pattern of errors in their answers.

Remaining Innovations. To augment the educational utility of TORUS,

the three levels of diagnosis described above have accompanying remedies.

These remedies accompany the fmal diagnosis given to the teacher. They are

written by Gerald Silbert, one of the leading curriculum developers in

mathematics for special education students. The remedies are drawn from a long

history of field testing and research with low achieving and learning disabled

students (Silbert, Carnine, & Stein, 1989).

The TORUS program has been field tested with fourth, fifth, and sixth

grade learning disabled students. Finally, TORUS was designed for the

Macintosh II computer. Apple Computer's leadership in the educational market

is well-known, and the TORUS program requires only one Macintosh computer

to analyze the results of an entire class of students. This, it is felt, is a cost

effective approach to microcomputer use in schools. BUGGY research conducted

a decade ago was done on mainframe computers. However, advances in

computing (hardware and software) allow programs of the complexity of

BUGGY to be replicated on platforms such as the Macintosh (Burton, personal

communication, 1990).

Documenting Misconceptions More Comprehensively

Computer-based assessment systems such as BUGGY or TORUS can

provide only so much information about systematic misconceptions or "buggy"

behavior. As mentioned earlier, one limitation of the BUGGY project was that

bugs were analyzed solely in the context of the computer program. Little was

done to methodically document the origin of these bugs or directly link a change

in misconceptions to specific instructional techniques. This is not to say that

many teaching techniques such as visual representations (e.g., Resnick, 1983;

73

Resnick & Ford, 1981; Resnick & Omanson, 1987) or scaffolded discussions

(Collins et al., 1989; Ferrara, 1987; Lampert, 1986; Resnick, 1988) have not been

deeply influenced by the BUGGY research. Rather, a BUGGY-like program or

method has not been used as a dependent measure in assessing the success or

failure of different methods.

To comprehensively research misconceptions in addition and subtraction,

these activities must be linked. Observational research that includes

mathematically-oriented interview and protocol techniques (e.g., Carpenter &

Moser, 1982 ; Davis, 1983; Ginsburg, Kossan, Schwarts, & Swanson, 1983)

documenting the origins and persistence of bugs for low achieving and learning

disabled children are critical. Further, experimental methods comparing

different instructional interventions, ones that use a system such as TORUS as a

main dependent measure, are equally critical. In this manner, the broad issue of

misconceptions their origins, persistence, and remedy -- can be successfully

researched.

7

74

REFERENCES

Ash lock, R. B. (1976). Error patterns in computation. Columbus, OH: Charles
Merrill.

Bowerman, R. G., & Glover, D. E. (1988). Putting expert systems into practice.
New York: Van Nostrand Reinhold Company.

Brown, A.L. & Campione, J. C. (1986). Psychological theory and the study of
learning disabilities. American Psychologist, 14(10), 1059-1068.

Brown, J. S., & Burton, R. (1978). Diagnostic models for procedural bugs in basic
mathematic skills. Cognitive Science, / 155-168.

Brown, J.S. & Van Lehn, K. (1982). Towards a generative theory of "bugs." In
T.P. Carpenter, J.M. Moser, & T.A. Romberg (Eds.), Addition and subtraction:
A cognitive perspective. Hillsdale, NJ: Lawrence Erlbaum Associates.

Burton, R.B. (1981). DEBUGGY: Diagnosis of errors in basic mathematical skills.
In D.H. Sleeman & J.S. Brown (Eds.), Intelligent tutoring systems. London:
Academic Press.

Carpenter, T.P. & Moser, J.M. (1982). The development of addition and
subtraction problem-solving.skills. In T.P. Carpenter, J.M. Moser, & T.A.
Romberg (Eds.), Addition and subtraction: A cognitive perspective.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Carpenter, T.P., Moser, J.M. & Romberg, T.A. (1982), Addition and subtraction:
A cognitive perspective. Hillsdale, NJ: Lawrence Erlbaum Associates.

Cawley, J.F. (1985). Cognition and the learning disabled. In J.F. Cawley (Ed.),
Cognitive strategies and mathematics for the learning disabled (pp. 1-29).
Rockville, MD: Aspen Systems Corporation.

Cox, L.S. (1975). Systematic errors in the four vertical algorithms in normal and
handicapped populations. Journal for Research in Mathematics Education, 6,
202-220.

Davis, RB. (1983). Complex mathematical cognition. In H.P. Ginsburg (Ed.), The
development of mathematical thinking. Orlando, Florida: Academic Press.

Deno, S., & Fuchs, LS. (1987). Developing curriculum-based measurement
systems for data-based special education problem solving. Focus on
Exceptional Children, 19(8), 1-16.

0

75

Doyle, W. (1988). Work in mathematics classes: The context of students' thinking
during instruction. Educational Psychologist, 23(2), 167-180.

Engelhardt, J. M. (1977). Analysis of childn,n's computational errors: A
qualitative approach. British journal of Educational Psychology, 47 149-54.

Ferrara, R.A. (1987). Learning mathematics in the zone of proximal
development The importance of flexible use of knowledge. Unpublished
doctoral dissertation. University of Illinois at Urbana-Champaign.

Ginsburg, H.P., Kossan, N.E., Schwartz, R., & Swanson, D. (1983). Protocol
methods in research on mathematical thinking. In H.P. Ginsburg (Ed.), The
development of mathematical thinking. Orlando, Florida: Academic Press.

Goldman, S.R. (1989). Strategy instruction in mathematics. Learning Disability
Ouarterly, 12, 43-55.

Harvey, L. F., & Kyte, G. C. (1965). Zero difficulties in multiplication. The
Arithmetic Teacher, 12 45-50.

Hayes-Roth, F., Waterman, D., & Lenat, D. (1983). Building expert systems.
Reading, MA: Addison-Wesley.

Hofmeister, A. (1986). Formative evaluation in the development and validation
of expert systems in education. Computational Intelligence, 2(2), 65-67.

Hofmeister, A. M., & Lubke, M. M. (1986). Expert systems: Implications for the
diagnosis and treatment of learning disabilities. Learning Disability
Quarterly, 9(2), 124-132.

Howard, L., & Woodward, J. P. (1990). Misconceptions in subtraction: An
analysis of secondary learning disabled students. (Tech. Rep. No. 90-1).
Eugene, Oregon: Eugene Research Institute.

Lampert, M. (1986). Knowing, doing, and teaching multiplication. Cognition
and Instruction, 3(4), 305-342.

Mandl, H. & Lesgold, A. (1988). Learning issues for intelligent tutoring systems.
New York: Springer-Verlag.

McLeod, T., & Armstrong, S. (1982). Learning disabilities in mathematics Skill
deficits and remedial approaches at the intermediate and secondary level.
Learning Disability Ouarterly, 5, 305-311.

Pellegrino, J.W., & Goldman, S.J. (1987). Information processing and elementary
mathematics. Journal of Learning Disabilities, 20, 23-32.

81

76

Resnick, L.B. & Omanson, S.F. (1987). Learning to understand arithmetic. In IL
Glaser (Ed.), Advances in instructional psychology (volume 3). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Resnick, L.B. (1982). Syntax and semantics in learning to subtract. In T.P.
Carpenter, J.M. Moser & T. Romberg (Eds.), Addition and subtraction:
Developmental perspective. Hillsdale, N.J.: Lawrence Erlbaum Associates.

Resnick, L.B. (1983). A developmental theory of number understanding. In H.P.
Ginsburg (Ed.), The development of mathematical thinking. Orlando,
Florida: Academic Press.

Resnick, L.B. (1988). Treating mathematics as an ill-structured discipline. In R.I.
Charles and E.A. Silver (Eds.), The teaching and assessing of mathematical
problem solving. Hillsdale, NJ/Reston, VA: Erlbaum and National Council
of Teachers of Mathematics.

Resnick, L.B., & Ford, W.W. (1981). The ps7cho1ogy of mathematics for
instruction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Roberts, F. (1984). An overview of intelligent CAI systems. Peabody Journal of
Education, 62(1), 40-52.

Roberts, G. H. (1968). The failure strategies of third grade arithmetic pupils. The
Arithmetic Teacher, 25_, 442-46.

Romberg, T.A. (1982). An emerging paradigm for research on addition and
subtraction skills. In T.P. Carpenter, J.M. Moser, & T.A. Romberg (Eds.),
Addition and subtraction: A copitive perspective. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Schoenfeld, A. (1988). When good teaching leads to bad results: The disasters of
"well-taught" mathematics courses. Educational Psychologist, 23(2), 145-166.

Silbert, J., Carnine, D., & Stein, M. (1989). Direct instruction mathematics.
Columbus, OH: Charles Merrill.

Sleeman, D. & Brown, J. (1981). Intelligent tutoring systems (pp. 227-282). New
York: Academic Press.

Van Lehn, K. (1982). Bugs are not enough: Empirical studies of bugs, impasses
and repairs in procedural skills. Journal of Mathematical Behavior, 3(2), 3-72.

77

Van Lehn, K. (1983). On the representation of procedures in repair theory. In
H.P. Ginsburg (Ed.), The development of mathematical thinking. Orlando,
Florida: Academic Press.

Van Lehn, K. (1988). Toward a theory of impasse-driven learning. In H. Mandl
& A. Lesgold (Eds.), Learning issues for intelligent tutoring systems. New
York: Springer-Verlag.

Wenger, E. (1987). Artificial intelligence and tutoring systems. New York:
Morgan Kaufmann.

West, T. A. (1971). Diagnosing pupil errors: Looking for patterns. The
Arithmetic Teacher,18, 467-69.

Woodward, J., Freeman, S., Blake, G., & Howard (1990). TORUS: Computer-
based analysis of subtraction. [computer program]. Eugene, Oregon: Eugene
Research Institute.

Young, RM. & O'Shea, T. (1981). Errors in children's subtraction. Cognitive
Sdence 5, 152-177.

83

6.0 Subtraction Misconceptions and Remedial Curricula 7 8

In order to provide a practical, cost effective method for remedying

TORUS diagnostic reports, appropriate lessons in SRA's Corrective

Mathematics Program were correlated to common misconceptions. A list of

the 10 most common misconceptions appear on the next page. Subsequent

pages match the misconceptions to the scope and sequence of the Corrective

Mathematics Program, a widely-used remedial curricula for special education

students. The lesson sequence has been carefully analyzed so that the learner

is provided effective but efficient remediation.

84

Miacar&DUgna

A. Borrowing - just one column

e.g. 5240 4205 5623
-1630 -1183

B . No borrowing - same number of columns

524
-130

638 841
-104 -110

C. No borrowing vs. adding with carrying

346 528
+136

D. No borrowing - different number of columns

4328 527 5285
-154

E. Borrowing in two columns (the columns are not next to each other)

4264
-1627

3022 4020
-616 -132Z

F. No borrowing - the answer to the biggest column(s) is zero which is not written

4263 6825
-4241 -6123

G . Borrowing required in a column just to the right of a column with a zero

6402 8061 400
-1717 -2480

H. Borrowing required in two consecutive columns

5246
-1465

8340 4620
:2422 -395

I. Borrowing required in a column just to the right of two columns that have a 10

3104 6102

J. Borrowing required in a column just to the right of the two columns that have 00

8000 5004
zaziE

85

7 9

8 0

Miscon. Lesson TP W B
Task PT

A 11 10 7

B 11 11 8

BC 11 12 9

A 12 10 6

B 12 11 7

BC 12 12 8

A 13 11 8

D 13 12 9

BC 13 13 10

A 14 7 6

A 14 8 7

D 14 9 8

BC 14 11 9

A 15 8 6

A 15 9 7

D 15 11 9

BC 15 12 10

TP = Teachers presentation book

WB = Student workbook

SG

A 16

A 16 8 6

A 16 9 7

A 16 10 7

BCD 16 11 8

A 17 7 6

A 17 8 7

A 17 9 8

A 17 10 8

BCD 17 11 9

A 18 . 6 6

BCD 18 7 7

A 19 6 6

BCD 19 7 7

E 20 7 6

A 20 8 7

F 21 6 5

E 21 11 9

A 21 12 10

F 22 7 6

G 22 8 7

E 22 9 8

F 23 8 7

87

8 1

G 23 9

E 23 11 9

F 24 7 6

E 24 8 7

G 24 8 8

G 25 6 6

EF 25 10 8

G 26 7 6

E 26 11 8

G 27 9 6

E 27 10 7

G 28 8 6

E 28 9 7

G 29 6 6

E 29 7 7

G 30 8 8

E 30 9 9

G 31 8 8

E 31 9 9

H 32 9 8

EG 32 10 9

H 33 8 7

EG 33 10 19

EGH 34 9 7

EGH 35 9 7

88

8 2

I 41

EGH 41 8

I 42 6 4

EGH 42 8

G 43 7

J 44 7 -

J 44 8

EGHt 44 10 8

J 45 6 6

J 46 4

J 48 5 5

EGHI 48 8 8

j 49 6 5

J 50 7

J 51 7 6

EGHE 51 9 8

J 52 6

J 53 7 6

HEJ 54 8 7

Hij 55 9

HIJ 56 9

HIJ 57 10 7

58 9 7

89

8 3

7.0 Current Uses of the TORUS Program

TORUS is now being used as a key dependent measure in an OSEP-

funded Small Grant for FY 1991-1992. The project uses an information

processing framework for understanding the complex and interrelated nature of

academic performance of students with learning disabilities. This orientation

also enables researchers to more closely assess the nature of individual

differences and to delineate those with instructional implications. Information

processing models have been successfully applied in the areas of reading,

writing, and spelling. In mathematics, to date, research has been limited to

increasing automaticity in basic arithmetic facts.

TORUS is one of two new assessment techniques and methodologies used

in this project. The other, think aloud interview techniques, are also utilized to

probe cognitive processes. Our complete analysis of misconceptions is based on

Kolligian and Sternberg's (1989) triarchic model of information processing. The

model views competent academic performance as influenced by three

interrelated components: strength of a knowledge base, strategic processing, and

motivation. Each of these components will be investigated using a variety of

measures. Finally, the research will be conducted longitudinally.

Findings from this research will have direct implications for the special

education teachers' understanding of the mathematics performance of students

with learning disabilities and assist them in developing sound instructional

programs that directly address students' misconceptions. Finally, what is

learned in this research will be applicable to other highly procedural or

algorithmic operations in mathematics that students with learning disabilities

study (e.g., multiplication, division, fractions, decimals).

a

8.0 Dissemination

John Woodward has made two major presentations on the TORUS

program and its fmdings. The first was to select education faculty at the

University of Michigan in April, 1991. The second was part of a CEC conference

symposium on mathematics in April, 1992. In addition, Lisa Howard and

Michael Landes presented TOkUS findings to the Oregon Conference in

February, 1992.

Throughout the project, Apple Computer, Inc., has provided technical

assistance and developer discounts on hardware for the project. Neuron Data of

Palo Alto, California -- the manufacturer of Nexpert ObjectTM has also provided

developer discounts on their product and many hours of free consultation for the

project.

A brief article on TORUS was also written for the March 1992 issue of

Counterpoint, a national publication for special educators and administrators. A

copy of this article appears on the next two pages.

Counterpoint
Spring 1992 15

TECHNOLOGY

Computers spot students' math misconceptions
Special educators could one day turn to

computerized expert systems to detect the
misconceptions that prevent students from
grasping math concepts.

If the successes of a prototype for
innovative technology is developed
commercially. computers could diagnose a
student's math errors and identify
consistent error patterns, says John P.
Woodward, a senior research associate at
the Eugene Research Institute (ERI) in
Oregon. Specific diagnosis would structure
math instruction and benefit student
achievement

In research funded by the Office of
Special Education Programs in the U.S.
Department of Education, TORUS was
launched by researchers at the ERL with
technical support from Apple Computer
Inc.. and Neuron Data Inc. of Palo Alto,
Calif. This project builds on prior work in
computer-based systems for analyzing
mathematical misconceptions.

7.

Change now
Math instruction is undergoing change

nationally because current methods prove
deficient for many children, Woodward
says. Poor performance is blamed partially
on an excessive focus on computation with
far too little time devoted to mathematical
understanding, problem solving, and
reasoning. Some believe math problems
begin as early as the first and second grade.

Students often practice computation to
an excessive degree, a practice that
jeopardizes true mathematical
understanding. Some yocng students view
math merely as meaningless symbol
pushing. Rather than becoming fluent in
the correct method for solving a problem,
many students invent their own algorithms,
ones that are not tied to conceptual
understanding. Thus important concepts
such as zero, place value, and so forth are
lost or never taught.

The patterns that these misconceptions,
or "bugs." take are surprisingly predictable,
yet not easily detected by teachers,
according to Woodward whose project

was created to analyze specific math
CIMM

TORUS relies on advanced expert
system technology to perform diagnoses.
Each student answer on a TORUS
subtraction assessment is analyzed by its
features, such as a borrow involving a zero,
or multiple borrows, or asymmetric
problems. or one where there are more
digits on the top than the bottom.

Comparisons are made to other
problems on the nut with similar features
to uncover a consistent error pattern.
TORUS next "predicts" answers to these
problems. matching its answer to the
students' actual answers. If enough correct
matches are made on the same feanues,
then the student is deemed to have a
systematic misconception or bug. An
computer-generated analysis of 40
subtraction problems requires about two
minutes once students complete the test and
enter all their answers.

If there are questions about possible
misconceptions. the TORUS system
generates a second test that is tailored to
problems of a particular type or set of
features. Results of this test are processed
in a similar manner.

The sophisticated nature of this kind of

Clearinghouse offers help to parents
Vietnam veterans now have a new

resource at their disposal when searching
for assistive technology to help their
disabled children.

The Access Group, which opened this
past fall, is a new information
clearinghouse that provides advice and

f.

technology so they can assist others," says
Webb. "It's for people who are thinking
about, say, an augmented-communication
device but need to know what's the best
system, how to get service or training or
the like."

The project only recently got off the
;,,

diagnosis is easily underestimated,
according to Woodward. Incorrect
answers to problems containing a single
zero, for example, may look the same to a
teacher, but reflect very different
underlying misconceptions. Furthermore,
the amount of time and concerted 'effort
associated with this kind of diagnosis is
impractical for teacher with average
classrooms of 25 to 30 students.

So many errocat
Last fall. 80 thixd graders and 65 fourth

graders were given the TORUS test Some

75 percent of the third graders showed
some kind of systematic misconception.
For example. 60 percent didn't remember
how to borrow. Fourth graders were not
much better.

In another study of more than 100
middle school students with learning
disabilities that was conducted last year,
there were equally dismal performance
results. Over half of the students showed
'weak concepts about borrowing.

Yes, conceptual teaching
TORUS fmdings are consistent with

related research conducted over the last 15
years. For all of the computational practice
that students are given in school, the results
are discouraging and make "the argument
for changing math instruction.

It is ironic that while TORUS is
designed to analyze computational
performance, it under.cores the need to
teach mathematics conceptually. Ideally,
computation problems in subtraction
should be thought of as vehicles for
teaching concepts and as one way of
representing mathematical knowledge..

Ultimately this will prepare students for
the work world and the kind of
mathematics they will need in an
information society. .

John Woodward, Eugene Research
Institute, 1400 High St., Suite C, Eugene
Oregon 97401. (503)342-1553.

Competitive Tools for individuals with
Physical Disabilities in the

Mainstream of Life

Co:Writer
An Intelligent word prediction .
prcgram for help with typing words.
Reduces keystrokes. Predicts by
grammar, language use, frequency
and recency.

Ke:ne
For those who can t use the
traditional kepoard and
mouse. Computer
access with onscrecn
or atternste key .
boards or even a
single switch.

92

,Sits,
alft.atill11111.4.,ZeriwipIP*11,--

- 'UW44'". 11, 4rs, IllgarOW4.4,4*. 4INP/r.... Air le11Itrij...L41.4.411**xey-
11r4v.p I4.4,40.47

111.

st's
SPRING 1992

11.

+*4;
Volume 12
Number 3

....nlwriwtoat .

unterpoint
Published by the Noticed Association of State Dftectors citSpecial &Amides

aa a Setvice *Teachers and Administrates et Special EdicatiOn

Al Conditions

teaming Dissblod

Emotionally Disturbed

Speech impaired

Montan,/ Retarded

Visually Impaired

Hard of Hawing

Deaf

Orthopedically Impoirad

Other Health Impaired

Multiply Handicapped 7

DoefalInd

11-71'

1aa

0

1.4

.3

3

a

0

20 30 40 50 60 70

Youth out of school I to 2 years who were employed competitively full or part time.

Study reveals how disabled
fare in years after school
By June Behrmann
Senior Editor

In what may be the most important
commissioned study released in a decade. the
U.S. Department of Education has learned some
good. bad, and surprising news about teenage
special education students who fail or succeed in
their last year of high school and for two years
that follow thereafter.

Among factors that affect student performance
and outcomes, several reflect back in positive
and negative ways to the gemral and special
education administrators and teachers who are
responsible for their schooling.

The report provides sufficient information to
create a blueprint for change, but as with past
data, the data raise hard questions for all
educators about the racial, socioeconomic, and
other factors that relate to dropping out of school
that are now documented in special education.

More than 90 percent of special education

secondary students in the study attended regu/ar
schools and 86 percent took at least some of their
courses in mainstream classrooms. The average
amount of time spent in regular education in this
study was 56 percent. with some students
spending a high of 77 percent, and more seriously
impaired students lipping to a low 19 percent.
Overall. 17 percent of students took all of their
courses in regular education.

On a positive note, nearly 70 percent of the
special education students, and particularly deaf
students and those with learning disabilities, rose
above counterparts in special education and were
as productive in the first and second year after
high school as nondisabled peers in the general
population. While two-year data is promising.
once peers earn college degrees, a gap between
groups is expected. cautions SRI International's
Mary Wagner, who directed the project and notes
that only about 1 percent of LD students go after
higher education and better outcomes it offers.

In other good news, more and mote students

Continued page 17

National Association of State Directors
of Special Education. Inc.
!SOO Diagonal goad, Stine 320
Alma** VA 22314

ED seeks out
unneeded, costly
federal regs

The time to act might have
arrived for educators wanting to
break down the regulatory
barriers that sometimes interfere
with the educating of child=
with disabilities.

The U.S. Department of
Education is requesting public
comment on federal regulations
that "substantially impede
economic growth, are no longer
needed, or impose unnecessary
costs or burdens."

"This is a real opportunity for
educators to convince federal
education officials to simplify,
eliminate, or redefine some
federal regulations." says
NASDSE Executive Director Bill
Schipper. "The Department of
Education is asking for this
information rather than we
having to convince them to do
something."
. The Education Department's
request is spurred by President
Bush's announcement during his
State of the Union Address of a
90-day moratorium on new
regulations and a requirement
that all federal agencies spend the
time betweenJan. 28 and April 28
reviewing existing regulations to
"weed out unnecessary and
burdensome government
regulations, which impose
needless costs on consumers and
substantially impede economic
growth."

In the Feb. 21 Federal
Register, the Education De-
partment also asked for
comments about regulations in
which there are "overlapping,
duplicative, inconsistent. or

$1 billion
sought for
special ed
A coalition of
national
organizations want
Congress to
increase federal
funding for special
education by SI
billion. Page 3.

-793

conflicting requirements with
other federal agencies, as well as
in the department's own
regulations." Education Secre-
tary Lamar Alexander also
expressed interest in "identifying
statutory changes that are needed
to reduce impediments to
economic growth or to eliminate
unnecessary burdensome or
costly requirements."

This provides an opportunity
to identify the regulatory bathers
within Chapter 1 that sometimes
interfere with special education/
Chapter I collaboration. Schipper
says. For instance, federal
regulations are strict about who
has access to equipment
purchased with Chapter 1 funds

to the extent that children with
disabilities often are barred from
using the equipment. Yet the
Chapter 1 program is designed to
serve many of the same children.

Comments must be received by
Education Department officials
no later than March 23.
"Comments should include the
information needed to identify
the particular provision at issue,
including the program name and
&citation to the relevant statute or
regulation," the department
announced. "Commenters are
requested to make their
suggestions as specific as
possible."

In a related development,
department officials still are
debating whether the moratorium
applies to education regulations
and funding priorities. Although
the President's order was sent to

Continued page 3

Professionals
join light
against abuse
Special educators
are focusing
attention on the
problem of
physical and
sexual abuse of .
children with
disabilities. Page 6.

Computers
identify kids'
weaknesses
Teachers could
one day turn to
computers to
identify the
misconceptions
that students have
about math.
Page 15.

eel

